بررسی تغییرات تنش و آهنگ کرنش در البرز مرکزی با استفاده از سازوکار کانونی زمین‌لرزه‌ها و بردارهای سرعت GPS

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

2 معاون پژوهشی/پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

چکیده

البرز به عنوان یکی از ایالت‌های لرزه‌زمین‌ساختی مهم در ایران به دلیل استقرار کلان‌شهر تهران در بخش‌های جنوبی آن از نظر سوانح طبیعی، به خصوص زمین‌لرزه، دارای خطرپذیری بالایی است. اهمیت این ناحیه همچنین باعث توسعۀ شبکه‌ای نسبتاً متراکم از ایستگاههای GPS در اطراف آن شده است. در این مطالعه از داده‌های سازوکار کانونی زمین‌لرزه‌ها که از منابع مختلف به دست آمده‌اند، برای وارون‌سازی تانسور تنش در البرز مرکزی استفاده شده است. از سوی دیگر در این مطالعه درون‌یابی بردارهای سرعت GPS بر روی یک شبکه مستطیل‌شکل و مشتق‌گیری در مرکز هر سلول برای مطالعۀ آهنگ کرنش در این ناحیه مورد استفاده قرار گرفت. نتایج این مطالعات نشان از تغییرات مکانی در محورهای اصلی تنش و آهنگ کرنش در قسمتهای مختلف البرز مرکزی داشت که بیانگر پیچیدگی‌های ژئودینامیکی منطقۀ مورد مطالعه است. در نهایت اختلاف زاویه‌ای بین راستاهای تنش بیشینۀ افقی و راستای فشارشی محورهای آهنگ کرنش در محل خوشه‌های زمین لرزه‌ها محاسبه شد. این مطالعه نشان داد که میزان افراز دگرشکلی در قسمتهای میانی البرز مرکزی، جایی که حرکات راستالغز بر روی گسلهای مشا و فیروزکوه مشاهده می‌شود، سهم بیشتری در فرایندهای جاری دگرشکلی البرز مرکزی بر عهده دارد. در عوض در شمال رشته کوه، جایی که حرکتهای عمدتاً شیب لغز بر روی راندگی خزر و گسل شمال البرز اتفاق می‌افتد، افراز دگرشکلی نقش کمرنگ‌تری را ایفا می کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of stress and strain rate variations in the Central Alborz by using earthquake focal mechanisms and GPS velocity vector data

نویسندگان [English]

  • Shahrokh Pourbeyranvand 1
  • Mohammad Tatar 2
1 International Institute of Earthquake Engineering and Seismology
2 vice president for research/International Institute of earthquake Engineering and Seismology
چکیده [English]

The Alborz, as one of the important seismotectonic provinces in Iran, has a great vulnerability from natural disasters, especially seismic risk point of view, because of the existence of Tehran megacity in its southern edge. The importance of this area has caused a relatively dense GPS network around it. In this study, the earthquake focal mechanism data obtained from different resources was used for stress tensor inversion in the Central Alborz. On the other hand, interpolation of the GPS vectors in rectangular grids and differentiation in the center of each grid cell was used for the study of strain rate in this area. The results showed special variation in principal axes of stress and strain rate, and also the changes in areal and maximum shear strain rates in different parts of the Central Alborz, which shows the geodynamic complexity of the study area. Finally, the angular differences between the maximum horizontal stress and strain rate compressive axis directions were calculated in the location of the clusters of the earthquakes. These calculations showed that the extent of the strain partitioning in the middle parts of the mountain range, where strike-slip motions on Mosha and Firuzkuh faults are observed, has more significant effect on the current deformation processes in the Central Alborz. Meanwhile, in the Northern parts of the range, where dominantly sip slip motions on Khazar Thrust and North Alborz fault occurs, deformation partitioning plays a minor role in the region.

کلیدواژه‌ها [English]

  • Earthquake focal mechanism Inversion
  • deformation partitioning
  • Strain Rate
  • Stress
  • The Central Alborz

کتابنگاری

بربریان، م.، قرشی، م.، طالبیان، م. و شجاع‌طاهری، ج.، 1375- پژوهش و بررسی نوزمین‌ساخت، لرزه‌زمین‎ساخت و خطر زمین‌لرزه- گسلش در گستره سمنان، گزارش شماره 63 سازمان زمین‎شناسی و اکتشافات معدنی کشور.

حسامی‏آذر، خ.، طبسی، ه. و مبین، پ.، 1390- نقشه گسل های جنبا در ایران (CD)، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله

نبوی، م. ح.، 1354- نقشه زمین‌شناسی 1:100000 سمنان، سازمان زمین‌شناسی کشور.

نعمتی‌‌، م.، ‌هتسفلد‌‌،‌ د.، ‌قیطانچی‌، م.، ‌طالبیان‌، م.، میرزایی‌، ن. و ‌سدیدخوی، ا.، 1390-‌ لرزه‌زمین‌ساخت ‌البرز ‌میانی-‌ خاوری ‌و‌ دامنه‌ جنوبی‌ آن ‌با‌ نگرشی ‌بر‌ زمین‌لرزه‌‌MW=‌5/7  جنوب دامغان، فصلنامه علوم زمین، 22، صص. 87 تا 98.

 

References

Alavi, M., 1996- Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran, J. Geodyn., 21(1), 1–33.

Allen, M., Ghassemi, M. R., Sharabi, M. and Qorashi, M., 2003- Accomodation of late Cenozoic oblique shortening in the Alborz range, Iran, J. Struct. Geol., 25, 659–672.

Allen, M., 2004- Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 23, TC2008.

Ambraseys, N. N. and Melville, C. P., 1982- A history of Persian earthquakes. Cambridge Earth Science Series. Cambridge University Press, London. 212 pp.

Arvidsson, R. and Ekstörm, G., 1998- Global CMT Analysis of Moderate Earthquakes, M w, Bulletin of the Seismological Society of America; August 1998; v. 88; no. 4; p. 1003-1013.

Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265.

Berberian, M. and Walker, R., 2010- The Rudbar Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran, Geophys. J. Int. 182, 1577–1602.

Berberian, M., 1983- The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust, Can. J. Earth Sci., 20(2), 163–183.

DeMets, C., Gordon, R. G. and Argus, D. F., 2010- Geologically current plate motions, Geophys. J. Int., 181, 1–80.

Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J. F., Hinderer, J., Hatam,Y., Luck, B., Moigne, N., Sedighi, M. and Khorrami, F., 2010- GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183, 1287-1301.

Engdahl, E. R., Van der Hilst, R. and Buland, R., 1998- Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America 88, 722–743.

Gephart, J. W. and Forsyth, D. W., 1984- An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence, J. Geophys. Res., 89, 9305-9320.

Gillard, D. and Wyss, M., 1995- Comparison of strain and stress tensor orientation: Application to Iran and southern California, Journal of Geophysical Research: Solid Earth, Volume 100, Issue B11, pages 22197–22213.

Haines, A. J. and Holt, W. E., 1993- A procedure to obtain the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J. Geophys. Res., 98, 12,057-12,082.

Haines, A. J., Jackson, J. A., Holt, W. E. and Agnew, D. C., 1998- Representing distributed deformation by continuous velocity fields, Rep. 98/5, Inst. of Geol. and Nucl. Sci., Lower Hutt, New Zealand.

Hollingsworth, J., Jackson, J., Walker, R. and Nazari, H., 2008- Extrusion tectonics and subduction in the eastern South Caspian region since 10 Ma, Geology, 36, 763–766.

Hollingsworth, J., Nazari, H., Ritz, J. F., Salamati, R., Talebian, M., Bahroudi, A., Walker, R., Rizza, M. and Jackson, J., 2010- Active tectonics of the east Alborz Mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A.D. Qumis earthquake, Journal of Geophysical Research, Volume 115, ssue B12.

Jackson, J. A., Priestley, K., Allen, M. and Berberian, M., 2002- Active tectonics of the South Caspian Basin, Geophysical Journal International, 148, 214-245.

Javidfakhr, B., Bellier, O., Shabanian, E., Siame, L., Léanni, L., Bourlès, D. and Ahmadian, S., 2011- Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran, Journal of Geodynamics 52 290–303.

Kagan, Y. Y., 2002- Double-couple earthquake focal mechanism: random rotation and display, Geophys. J. Int., 163, 1065–1072.

Keiding, M., Arnadottir, T., Sturkell, E., Geirsson, H. and Lund, B., 2008- Strain accumulation along an oblique plate boundary: The Reykjanes Peninsula, southwest Iceland, Geophys. J. Int., 172, 861–872.

Lund, B. and Slunga, R., 1999- Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Olfus in southwest Iceland, Journal of Geophysical Research, 104(B7), 14947-14964.

Masson, F., Chery, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F. and Ghafory-Ashtiani, M., 2005- Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data, Geophys. J. Int., 160, 217–226.

Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H. and Vernant, P., 2006- Extension in NW Iran driven by the motion of the South Caspian Basin, Earth Planet. Sci. Lett., 252(1–2), 180–188.

Masson, F., Lehujeur, M., Ziegler, Y. and Doubre, C., 2014- Strain rate tensor in Iran from a new GPS velocity field. Geophysical Journal International, 197(1), 10-21.

McKenzie, D. P., 1969- The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59, 591-601.

Michael, J., 1984- Determination Of Stress From Slip Data: Faults And Folds, Journal of Geophysical Research, VOL. 89, No. B13, Pages 11,517-11,526.

Nemati, M., Hatzfeld, D., Gheitanchi, M. R., Sadidkhouy, A. and Mirzaei, N., 2011- Microseismicity and seismotectonics of the Firuzkuh and Astaneh faults (East Alborz, Iran), Volume 506, Issues 1–4, 11–21.

Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., Nankali, H., Hatzfeld, D., Bayer, R., Tavakoli, F., Ashtiani, A., Doerflinger, E., Daignières, M., Collard, P. and Chéry, J., 2003- GPS network monitors the Arabia-Eurasia collision deformation in Iran, Journal of Geodesy, 77, 411-422.

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S. and Ergintav, S., 2006- GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111, B05411.

Ritz, J. F., Nazari, H., Ghassemi, A., Salamati, R., Shafei, A., Solaymani, S. and Vernant, P., 2006- Active transtension inside central Alborz: a new insight into northern Iran-southern Caspian geodynamics, Geology, 34(6), 477–480.

Snoke, J. A., Munsey, J. W., Teague, A. C. and Bollinger, G. A., 1984- A program for focal mechanism determination by combined use of polarity and SV -P amplitude ratio data, Earthquake Notes, 55, 3, 15.

Stocklin, J., 1974- Possible ancient continental margin in Iran. In: Burke, C., Drake, C. (Eds.), Geology of Continental Margins. Springer-Verlag, New York, pp. 873–877.

Tatar, M., Hatzfeld, D., Abbassi, A. and Yamini Fard, F., 2012- Microseismicity and seismotectonics around the Mosha fault (Central Alborz, Iran), Tectonophysics, Volumes 544–545, 29 May 2012, Pages 50–59.

Tatar, M., Jackson, J., Hatzfeld, D. and Bergman, E., 2007- The 28 May 2004 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: implications for Tehran and the geology of the South Caspian Basin margin. Geophysical Journal International 170, 249–261.

Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. and Chéry, J., 2004- Contemporary Crustal Deformation and Plate Kinematics in Middle East Constrained by GPS measurements in Iran and Northern Oman, Geophys. J. Int., 157, 381-398

Vernant, Ph., Nilforoushan, F., Che´ry, J., Bayer, Y., Djamour, R., Massona, F., Nankali, H., Ritz, J. F., Sedighi, M. and Tavakoli, F., 2004- Deciphering oblique shortening of central Alborz in Iran using geodetic data, Earth planet. Sci. Lett., 223, 177–185.

Zanchi, A., Berra, F., Mattei, M., Ghassemi, M. and Sabouri, J., 2006- Inversion tectonics in central Alborz, Iran, J. Struct. Geol., 28, 2023–2037.

Zarifi, Z., Nilfouroushan, F. and Raeesi, M., 2014- Crustal stress map of Iran: Insight from seismic and geodetic computations. Pure and Applied Geophysics, 171, 1219–1236.

Zhu, S. and Shi, Y., 2011- Estimation of GPS strain rate and its error analysis in the Chinese continent, Journal of Asian Earth Sciences, 40, 351–362.