بررسی منشأ آمفیبول در هورنبلند- گابروهای الیوین‌دار شمال‌باختری سلماس- شمال‌باختری ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه

2 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

آمفیبول‌های موجود در هورنبلند- گابروهای الیوین‌دار در شمال‌باختری سلماس در بافت‌های متعددی همچون اویکوکریست و بین‌بلوری در زمینه سنگ، بیرونی‌ترین قسمت حاشیه‌های واکنشی اطراف الیوین و در حاشیه و محل رخ‌های کلینوپیروکسن‌ها تشکیل شده‌اند. بر اساس مطالعات بافتی و سنگ‌نگاری، این کانی‌ها در مراحل تأخیری‌تر نسبت به دیگر کانی‌های موجود در هورنبلند- گابروهای الیوین‌دار شمال‌باختری سلماس تشکیل شده‌اند. بررسی ترکیب عناصر نادر خاکی و کمیاب آمفیبول‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های مورد مطالعه در دو بافت مجزا برای آمفیبول‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های موجود در متن سنگ و بین‌بلوری (گروه اول) و آمفیبول‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های تشکیل شده در حاشیه و محل رخ‌های کلینوپیروکسن (گروه دوم) بیانگر تشکیل این کانی از تبلور مذاب/سیال بین‌بلوری و یا برهم‌کنش این مذاب/سیال با کانی‌های تشکیل شده در مراحل اولیه همچون کلینوپیروکسن و پلاژیوکلاز است. از اینرو با توجه به داده‌های موجود (روابط بافتی، مجموعه کانیایی و نیز ترکیب عناصر کمیاب آمفیبول‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ها)، هورنبلند- گابروهای الیوین‌دار شمال‌باختری سلماس در طی دو مرحله تشکیل شده‌اند. مرحله اول شامل تبلور تفریقی و تشکیل کانی‌های الیوین، کلینوپیروکسن و پلاژیوکلاز بوده و مرحله دوم شامل تأثیر مذاب باقیمانده غنی از آب بر روی کانی‌های متبلور شده در مرحله قبل بویژه کلینوپیروکسن و پلاژیوکلاز و تبلور آمفیبول است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigations on amphibole origin in olivine-bearing hornblende gabbros from NW of Salmas; NW Iran

نویسندگان [English]

  • Masoumeh Ahangari 1
  • Mohssen Moazzen 2
1 Department of Geology, Faculty of Sciences,Urmia University, Urmia, Iran
2 Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

Amphiboles in olivine-bearing hornblende- gabbros from NW of Salmas were crystallized in various textures including oikocryst and interstitial textures in the matrix, outer part of reaction rims around olivine, and at the rim and cleavages of clinopyroxene. On the basis of petrographical and textural studies, amphiboles were formed later than the other minerals in the olivine-bearing hornblende- gabbros. The REE and trace element composition of amphiboles from two different textures including interstitial and matrix amphiboles (group one) and amphiboles after clinopyroxenes (group two), indicate that the studied amphiboles were formed by either crystallization of interstitial melt/fluid or interaction of interstitial melt/fluid with early crystalized minerals such as clinopyroxene and plagioclase. Hence, according to the textural and mineralogical data and trace element composition of amphiboles, olivine-bearing hornblende- gabbros were crystallized at least at two stages. The first stage include fractional crystallization and formation of olivine, clinopyroxene and plagioclase and the second stage was interaction of the relict melt/fluid with early crystalized minerals, specially clinopyroxene and plagioclase and formation of amphibole.

کلیدواژه‌ها [English]

  • Amphibole
  • Hornblende- gabbro
  • Relict melt
  • Salmas

References

Abd El-Rahman, Y., Helmy, H. M., Shibata, T., Yoshikawa, M., Arai, S. and Tamura, A., 2012- Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: Implications for the pluton origin and evolution of subduction-related magma, Lithos, 155: 410-425.

Anderson, J. L. and Smith, D. R., 1995- The effects of temperature and ƒO2 on the Al-in-hornblende barometer, American Mineralogist, 80: 549-559.

Bindeman, I. and Davis, A., 2000- Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior, Geochemica et Cosmochimica Acta, 64: 2863-2878.

Bottazzi, P., Tiepolo, M., Vannucci, R., Zanetti, A., Brumm, R., Foley, S. F. and Oberti, R., 1999- Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE, Contributions to Mineralogy and Petrology, 137: 36-45.

Claeson, D. T. and Meurer, W. P., 2004- Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates, Contributions to Mineralogy and Petrology, 147: 288-304.

Coogan, L. A., Wilson, R. N., Gillis, K. M. and MacLeod, C. J., 2001- Near-solidus evolution of oceanic gabbros: Insights from amphibole geochemistry, Geochimica et Cosmochimica Acta, 65: 4339-4357.

Cooper, G. F., Davidson, J. P. and Blundy, J. D., 2016- Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust, Contributions to Mineralogy and Petrology, 171: 87.

Costa, F., Dungan, M. A. and Singer, B. S., 2002- Hornblende- and Phlogopite-Bearing Gabbroic Xenoliths from Volcán San Pedro (36°S), Chilean Andes: Evidence for Melt and Fluid Migration and Reactions in Subduction-Related Plutons, Journal of Petrology, 43: 219-241.

Davidson, J., Turner, S., Handley, H., Macpherson, C. and Dosseto, A., 2007- Amphibole “sponge” in arc crust?, Geology, 35: 787-790.

DePaolo, D. J., 1981- Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth and Planetary Science Letters, 53: 189-202.

Dessimoz, M., Müntener, O. and Ulmer, P., 2012- A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades), Contributions to Mineralogy and Petrology, 163: 567-589.

Emami, M. H., Sadeghi, M. M. and Omrani, S. J., 1993- Magmatic map of Iran, 1/1000000, Geological Survey of Iran.

Fischer, T. P. and Marty, B., 2005- Volatile abundances in the sub-arc mantle: Insights from volcanic and hydrothermal gas discharges, Journal of Volcanology and Geothermal Research, 140: 205-216.

Ghaffari, M., Rashidnejad-Omran, N., Dabiri, R., Chen, B. and Santos, J. F., 2013- Mafic–intermediate plutonic rocks of the Salmas area, northwestern Iran: their source and petrogenesis significance, International Geology Review, 55: 2016-2029.

Gillis, K. M. and Meyer, P. S., 2001- Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: Evidence from the rare earth element composition of amphiboles, Geochemistry, Geophysics, Geosystems, 2: 2000GC000087.

Hilyard, M., Nielsen, R. L., Beard, J. S., Patinõ-Douce, A. and Blencoe, J., 2000- Experimental determination of partitioning behavior of rare earth and high field strength elements between pargasitic amphibole and natural silicate melts, Geochimica et Cosmochimica Acta, 64: 1103-1120.

Holland, T. J. B. and Blundy, J. D., 1994- Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry, Contributions to Mineralogy and Petrology, 116: 433-447.

Khodabandeh, A. A., Soltani, G. A., Sartipi, A. H. and Emami, M. H., 2002- Geological map of Iran, 1:100,000 series sheet Salmas, Geological Survey of Iran, Tehran.

Klein, M., Stosch, H. G. and Seck, H. A., 1997- Partitioning of high field-strength and rare earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study, Chemical Geology, 138: 257-271.

Larocque, J. and Canil, D., 2010- The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada, Contributions to Mineralogy and Petrology, 159: 475-492.

Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. and Youzhi, G., 1997- Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names, American Mineralogist, 82: 1019-1037.

Lemarchand, F., Benoit, V. and Calais, G., 1987- Trace element distribution coefficients in alkaline series, Geochimica et Cosmochimica Acta, 51: 1071-1081.

Macpherson, C. G., Dreher, S. T. and Thirlwall, M. F., 2006- Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines, Earth and Planetary Science Letters, 243: 581-593.

McDonough, W. F. and Sun, S. S., 1995- The composition of the Earth, Chemical Geology, 120: 223-253.

Meurer, W. P. and Claeson, D. T., 2002- Evolution of crystallizing interstitial liguid in an arc- related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst, Journal of  Petrology, 43: 607-629.

Mével, C., 1987- Evolution of oceanic gabbros from DSDP Leg 82: influence of the fluid phase on metamorphic crystallizations, Earth and Planetary Sciencce Letters, 83: 67-79.

Murphy, J. B., Blais, S. A., Tubrett, M., McNeil, D. and Middleton, M., 2012- Microchemistry of amphiboles near the roof of a mafic magma chamber: Insights into high level melt evolution, Lithos, 148: 162-175.

Paster, T. P., Schauwecker, D. S. and Haskin, L. A., 1974- The behavior of some trace elements during solidification of the Skaergaard layered series, Geochemica et Cosmochimica Acta, 38: 1549-1577.

Sabzehi, M. and Mohammadiha, K., 2003- Geological map of Gangejin (Serow), Scale 1:100000, Geological Survey of Iran.

Schilling, J., Marks, M. A. W., Wenzel, T., Vennemann, T., Horvath, L., Tarassof, P., Jacob, D. E. and Markl, G., 2011- The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire complex: Insights into the late-stage evolution of peralkaline rocks, Journal of  Petrology, 52: 2147-2185.

Shirley, D. N., 1987- Differentiation and Compaction in the Palisades Sill, New Jersey, Journal of Petrology, 28: 835-865.

Smith, D. J., 2014- Clinopyroxene precursors to amphibole sponge in arc crust, Nature Communications, 5.

Sparks, R. S. J., Huppert, H. E., Kerr, R. C., McKenzie, D. P. and Tait, S. R., 1985- Postcumulus processes in layered intrusions, Geological Magazine, 122: 555-568.

Stöcklin, J., 1968- Structures history and tectonic of Iran, A review, American Association of Petroleum Geologist Bulletin, 52: 1229-1258.

Tiepolo, M. and Tribuzio, R., 2008- Petrology and U–Pb Zircon Geochronology of Amphibole-rich Cumulates with Sanukitic Affinity from Husky Ridge (Northern Victoria Land, Antarctica): Insights into the Role of Amphibole in the Petrogenesis of Subduction-related Magmas, Journal of Petrology, 49: 937-970.

Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R. and Foley, S. F., 2007- Trace-Element Partitioning Between Amphibole and Silicate Melt, Reviews in Mineralogy and Geochemistry, 67: 417-452.

Wallace, P. J., 2005- Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volatile gas data, Journal of Volcanology and Geothermal Research, 140: 217-240.