کانی شناسی کانسار (Zn-Cu-(Pb-Bi-Ag ماهور، باختر ده سلم: رهیافتی بر ژنز و نوع کانه زایی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

2 دانشیار، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

3 استاد، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

کانسار (Zn-Cu-(Pb-Bi-Ag ماهور در مرکز بلوک لوت، در پهنه به شدت خردشده گسلی، بیشتر در واحد آتشفشانی- نیمه آتشفشانی داسیت - ریوداسیت به سن ائوسن بالایی- الیگوسن، تشکیل شده است. کانی سازی به‎صورت رگه ای، رگچه ای و برشیِ سولفید توده ای و یا همراه رگه- رگچه های کوارتز، کوارتز- کربنات و یا کوارتز- مسکوویت (سریسیت)- کربنات رخ داده است و به جز مقدار ناچیزی اسفالریت تیره، تنها پیریت ریزدانه به‎صورت فاز افشان در متن سنگ میزبان دیده می شود. کانی سازی درون زاد پیچیده و شامل کانی‎های اصلی پیریت، اسفالریت آهن دار و کالکوپیریت در همراهی با گالن، انواع سولفوسالت های مس، انواع سولفوسالت های بیسموت، اسفالریت فقیر از آهن و مقدار کمی گرینوکیت، آرسنوپیریت، دیژنیت و به احتمال کوولیت است که نقره به مقدار قابل توجه در شبکه برخی کانی های سولفوسالتی و سولفیدی حضور دارد و کمی کانی های تنگستن طلادار نیز به‎طور محلی رخ داده اند. کانه زایی به‏طور چیره با دگرسانی سریسیتی، آرژیلی متوسط، پروپیلیتی و گاه آرژیلی پیشرفته و کوارتز- آدولاریا همراه بوده و طی سه مرحله اصلی شامل 1- مرحله کوارتز- پیریت، 2- مرحله اسفالریت آهن دار و 3- مرحله کالکوپیریتِ همراه شده با سولفوسالت ها و کمی کانی های سولفیداسیون بالا تشکیل شده است. کانه‌زایی پس از مرحله سیلیسی  شدن و پیریت زاییِ افشانِ تورمالین دار (دگرسانی سریسیتیِ پیش از کانه زایی) رخ داده و فرایند هوازدگی آن را تحت تأثیر قرار داده است. با توجه به مقدار بسیار پایین Cu در سامانه تعادلی Cu-Zn-S، محتوای بالای ادخال های کالکوپیریت در اسفالریت های آهن دار تیره ماهور نشانگر منشأ جانشینی بافت بیماری کالکوپیریت است. این بافت در همراهی با کانی شناسی (کانه و دگرسانی) کانسار نشانگر تشکیل کانی سازی پلی متال ماهور به تقریب در محدوده دمایی 200 تا 400 درجه سانتی‌گراد و از سیالی با حالت سولفیداسیون متوسط و درجه اسیدی کم است که سیال یاد شده به علت واکنش با سنگ دیواره خنثی تا قلیایی شده؛ ولی شواهد کمی از تکامل سیال به حالت سولفیداسیون بالا، شرایط اسیدی تر و اکسیدان تر در بخش غنی از مس آن ثبت شده است. ویژگی های کانی شناسی کانسار ماهور منشأ بیشتر ماگماییِ سیال گرمابیِ کانه زا را نشان می دهند و در تلفیـق بـا ساختار کانه زایی، همراهی با سنگ های آذرین کالک آلکالن تا شوشونیتی و موقعیت زمین ساختی سنگ های میزبان، بیشترین شباهت را با کانسارهای لود پلی متال نوع کردیلرن دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy of Mahour Zn-Cu-(Pb-Bi-Ag) deposit, west of Dehsalm: implications for genesis and mineralization type

نویسندگان [English]

  • S. Younesi 1
  • M. R. Hosseinzadeh 2
  • M. Moayyed 3
1 Ph.D. Student, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2 Associate Professor, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
3 Professor, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

The Mahour Zn-Cu-(Pb-Bi-Ag) deposit located in central Lut Block, formed in an intensely crushed fault zone, dominantly in dacite-rhyodacite volcanic-subvolcanic unit of Late Eocene- Oligocene age. Mineralization occurred as veins, veinlets and breccia massive sulfide and/or  as quartz , quartz-carbonate or quartz-muscovite (sericite)- carbonate vein-veinlets. Apart from negligible dark sphalerite, only fine-grained pyrite is observed as disseminated phase within the host rocks. Hypogene mineralization is complex and the main minerals, in order of abundance, are pyrite, Fe-bearing sphalerite and chalcopyrite, with subordinate galena, Cu-sulfosalts, Bi-sulfosalts, Fe-poor sphalerite, and afew greenokite, arsenopyrite, digenite and probably covellite. The Considerable amounts of Ag exist in lattice of some sulfosalt and sulfide minerals, as well as locally negligible Au-bearing W minerals. Mineralization is dominantly associated with sericitic, intermediate argillic and propyllitic alterations and rarely with advanced argillic and quartz- adularia that formed at three main stages including: 1- quartz- pyrite, 2- Fe- bearing sphalerite, and 3- chalcopyrite stage with sulfosalts and minor high sulfidation minerals. Mineralization occurred after silicification and disseminated pyritization that comprise tourmaline (sericitic alteration prior to mineralization) and then weathering process affected it. According to very low dissolution of Cu in Cu-Zn-S equilibrium system, high density of chalcopyrite inclusions in Fe-bearing dark sphalerites in Mahour reveals replacement origin of chalcopyrite disease texture. This texture and mineralogy (ore and alteration) indicate formation of Mahour polymetal mineralization at temperature range of 200-400°C and from an intermediate sulfidation state and low acidity fluid which was neutralized to alkaline by interaction with wall rock. Although, a minor evidence for evolution to high sulfidation state, more acidic and oxidation conditions is recorded in Cu- rich zone. Mineralogical features of the Mahour deposit indicate predominantly magmatic origin for mineralizing hydrothermal fluid, and in combination with mineralization structure, association with calc-alkaline to shoshonitic igneous rocks and tectonic setting of host rocks, are very similar to cordilleran style polymetal lode deposits.

کلیدواژه‌ها [English]

  • Mineralogy
  • Microprob
  • Chalcopyrite disease
  • Sulfosalt
  • Intermediate to high sulfidation
  • Cordilleran Polymetal Lode
  • Mahour
  • Lut block
آقانباتی، س. ع.، 1383- زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 586 ص.
اسفرم، م.، 1390- ژئوشیمی و توالی پاراژنزی کانی های موجود در کانسار پلی متال ماهور، غرب نهبندان (شرق ایران)، پایان نامه کارشناسی ارشد (چکیده)، دانشگاه سیستان و بلوچستان.
امامی، م. ه.، ١٣٧٩- ماگماتیسم در ایران، سازمان زمین شناسی و اکتشافات معدنی کشور، شماره ٧١، 622 ص.
بومری، م.، بیابانگرد، ح.، ناکاشیما، ک. و اسفرم، م.، ١٣٩٢- پیدایش و شیمی کانی های سولفیدی و اکسیدی برون زاد در کانسار پلی متال ماهور، غرب نهبندان، پترولوژی، سال چهاردهم، ص. ١٧ تا ٣٠.
شرکت تحقیق و گسترش صنایع معدنی پارس کانی، 1391- گزارش نهایی اکتشاف در ناحیه امیدبخش ماهور، استان خراسان جنوبی.
مؤید، م.، 1380- بررسی های پترولوژیکی سنگهای نوار ولکانو-پلوتونیک ترشیری البرزغربی-آذربایجان بانگرشی ویژه برمنطقه هشتجین، رساله دکترا، دانشگاه شهید بهشتی، 328 ص.
میرزایی راینی، ر.، احمدی،ع. و میرنژاد، ح.، 1391- بررسی کانی شناسی و شاره های درگیر در کانسار چندفلزی ماهور، شرق بلوک لوت، ایران مرکزی، مجله بلورشناسی و کانی شناسی ایران، سال بیستم، شماره 2، ص. 307 تا 318.
میری بیدختی، ر.، 1394- کانی سازی، دگرسانی، پترولوژی و سن سنجی توده های نفوذی شمال غرب- غرب ده سلم، رساله دکترا، دانشگاه فردوسی مشهد.
یوسف زاده م. ح.، 1388- پتروگرافی، ژئوشیمی و پتروژنز سنگ های آتشفشانی ترشیری منطقه بیرجند ـ خوسف با نگرشی ویژه بر آنکلاوهای موجود در آن، رساله دکترا، دانشگاه شهید بهشتی، 286 ص.
یونسی، س.، حسین زاده، م. ر.، مؤید، م. و مقصودی، ع.، 1395- بررسی زمین شناسی، پترولوژی و پتروژنز سنگ های آذرین محدوده معدنی- اکتشافی ماهور، باختر ده سلم، با نگرشی بر جایگاه تکتونوماگمایی لوت، فصلنامه علوم زمین، سال بیست و ششم، شماره 100، سازمان زمین شناسی کشور، ص. 179 تا 198.


References
Alavi, M., 1991- Sedimentary and structural charactristics of the Paleo-Tethys remants in northeastern Iran. Geological Society of America Bulletin 103: 983-992.
Arribas, A. Jr., Cunningham, O., Rytuba, J., Rye, O., Kelly, W., Podwysocki, W., McKee, E. and Tosdal, R., 1995- Geology, geochronology, fluid inclusions, and isotope geochemistry of Rodalquilar Au alunite deposit, Spain. Economic Geology 90: 795– 822.
Augustithis, S. S., 1995- Atlas of the Textural Patterns of Ore Minerals and Metallogenic Processes. Berlin, New York, Walter de Gruyter, 659pp.
Barton, P. B. Jr., 1978- Some ore textures involving sphalerite from the Furutobe mine, Akrta Prefecture, Japan. Mining Geology 28: 293-300.
Barton, P. B. Jr. and Bethke, P. M., 1987- Chalcopyrite disease in sphalerite: pathology and epidemiology. American Mineralogist 72: 451–467.
Bartos, P. J., 1989- Prograde and retrograde base metal lode deposits and their relationship to underlying porphyry copper deposits. Economic Geology 84: 1671-1683.
Baumgartner, R., Fontboté, L. and Vennemann, T., 2008- Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology 103: 493-537.
Bendezú, R., Page, L., Spikings, R., Pecskay, Z. and Fontboté, L., 2008- New 40Ar/39Ar alunite ages from the Colquijirca District, Peru: Evidence of long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores. Mineralium Deposita 43: 777-789.
Bente, K. and Doering, Th., 1993- Solid-state diffusion in sphalerites: an experimental verification of the ‘‘chalcopyrite disease’’. European Journal Mineralogy 5: 465–478.
Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18: 210–265.
Berberian, M., 1977- Against the Rigidity of the Lut Block, a seismotectonic discussion, Geoloy Survey of Iran, Report No. 40
Browne, P. R. L., and Ellis, A. J., 1970- The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related geochemistry. American Journal of Science 269: 97-215.
Camp, V. E. and Griffis, R. J., 1982- Character, genesis and tectonic setting of igneous rocks in the sistan suture zone, eastern Iran. Lithos 15(3): 221-239.
Chang, L. L. Y., Daquing, W. U. and Knowles, C. R., 1988- Phase relations in the system Ag2S-Cu2S-PbS-Bi2S3. Economic Geology 83: 405-418.
Cooke, D. R., Mcphail, D. C., and Bloom, M. S., 1996- Epithermal gold mineralization, Acupan, Baguio district, Philippines; geology, mineralization, alteration, and the thermochemical environment of ore deposition. Economic Geology 91: 243-272.
Craig, J. R. and Vaughan, D. J., 1994- Ore microscopy and ore petrpgraphy, A Wiley- Intersclence Publication, New York, 433p.
Einaudi, M. T., 1977- Environment of ore deposition at Cerro de Pasco, Peru, Economic Geology 72: 893–924.
Einaudi, M. T., 1982- Description of skarns associated with porphyry copper plutons, southwestern North America. In: Titley SR (ed.), Advances in geology of the porphyry copper deposits, southwestern North America. University of Arizona Press, Tucson: 139–184.
Einaudi, M. T., Hedenquist, J. W. and Inan, E. E., 2003- Sulfidation state of fluids in active and extinct hydrothermal systems: Transition from porphyry to epithermal environments, Society of Economic Geologists, Special Publication 10: 285-313.
Eldridge, C. S., Bourcier, W. L., Ohmoto, H. and Barnes H. L., 1988- Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Economic Geology 83: 978–989.
Fontboté, L. and Bendezú, R., 2009- Cordilleran or Butte-type veins and replacement bodies as a deposit class in porphyry systems. In: Williams et al., P.J. (ed) Proceedings of the 10th Biennial Society of Geology Applied to Ore Deposits Meeting, Townsville, Australia: 521-523.
Foord, E. E. and Shawe, D. R., 1988- Coexisting galena PbSss and sulfosalts evidence for multiple episodes of mineralization in the Round Mountain and Manharan Gold Districts in Nevada. Canadian Mineralogist 26: 355–376.
Guilbert, J. M. and Park, C. F. Jr., 1986- The geology of ore deposits. W. H. Freeman and Company, New York, 985 p.
Hutchison, M. N. and Scott, S. D., 1981- Sphalerite geobarometry in the Cu–Fe–Zn–S system. Economic Geology 76: 143–153.
Ixer, R. A. and Pattrick, R. A. D., 2003- Copper-arsenic ores and Bronze Age mining and metallurgy with special reference to the British Isles. In P.T. Craddock, and J. Lang (eds), Mining and Metal Production through the Ages. London: British Museum, 9-21.
Kojima, S. and Sugaki A., 1984- Phase relations in the central portion of the Cu–Fe–Zn–S system between 800 and 500 °C. Mineralogica Journal 12: 15–28.
Kojima, S. and Sugaki, A., 1985- Phase relations in the Cu–Fe–Zn–S system between 500 j and 300 °C under hydrothermal conditions. Economic Geology 80: 158–171.
Kretschmar, U. and Scott, S. D., 1976- Phase relations involving arsenopyrite in the system Fe –As –S and their application. Canadian Mineralogist 14: 364 –386.
Lepetit, P., Bente, K., Doering, T. and Luckhaus, S., 2003- Crystal chemistry of Fe-containing sphalerites, Physics and Chemistry of Minerals 30(4): 185–191.
Lewis, M. H., 1997- Characterization of hypogene covellite assemblages at the Chuquicamata porphyry copper deposit, Chile, Section 4500N. MSc thesis, Halifax, NS, Dalhousie University, 223p.
Lindgern, W., 1933- Mineral deposits. 4th ed., McGraw-Hill, NewYork, 930p.
Lusk, J. and Calder, B. O. E., 2004- The composition of sphalerite and associated sulfides in reactions of the Cu–Fe–Zn–S, Fe–Zn–S and Cu–Fe–S systems at 1 bar and temperatures between 250 and 535 °C, Chemical Geology 203: 319–345.
Marignac, Ch., 1989- Sphalerite stars in chalcopyrite: are they always the result of an unmixing process? Mineralium Deposita 24: 82-176.
Meyer, C., Shea, E. P. and Goddard, C. C., Jr., 1968- Ore deposits at Butte, Montana, In Ridge, J.D., (ed.), Ore deposits of the United States 1933-1967, 2: New York, American Institute of of Mining, Metallurgical, and Petroleum Engineers, 1363-1416.
Morimoto, N. and Koto, K., 1970- Phase relations in the Cu-S system at low temperatures: stability of anilite, American Mineralogist 55: 106-117.
Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Khatib, M. M., Mohammadi, S. S., Chiu, H. Y., Chu ,C. H., Lee, H. Y. and Lo, C. H., 2013- Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos 180- 181: 234-25.
Park, C. F. and MaC Diarmid, R. A., 1975- Ore deposits, Freeman and Company. San Francisco, 530 p.
Sawkins, F. J., 1972- Sulfide ore deposits in relation to plate tectonics. Journal Geology 80: 377–396.
Scott, S. D., 1974- Experimental methods in sulfide synthesise. In: Sulfide Mineralogy: P.H. Ribbe (eds.). Reviews in Mineralogy 1. Washington, DC: Mineralogical Society of America Pp.S-1 to S-38
Seedorff, E., Dilles, J. H., Proffett, J. M., Jr., Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A. and Barton, M. D., 2005- porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume. 251-298.
Sillitoe, R. H., 2000- Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery. SEG reviews, 13: 315-345.
Sillitoe, R. H., 2005- Supergene oxidized and enriched porphyry copper and related deposits, Economic Geology 100th Anniversary: 723-768.
Simmons, S. F., White, N. C. and John, D. A., 2005- Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary: 485-522.
Simpson, M. P., Mauk, J. and Simmons, S. F., 2001- Hydrothermal alteration and paleohydrology of the Golden Cross epithermal deposit, Waihi, New Zealand, Economic Geology 96: 773-796.
Stöcklin, J., Eftekharnezhad, J. and Hushmandzadeh, A., 1972- Central Lut reconnaissance East Iran, Geological Survey of Iran, Report No.22.
Tirrul, R., Bell, I. R., Griffis, R. J. and Camp, V. E., 1983- The sistan suture zone of eastern Iran, Geological Society of America Bulletin, 94: 134-156.
Topa, D., Makovicky, E. and Paar, W. H., 2002- Composition ranges and exsolution pairs for the members of the bismuthinite-aikinite series from felbertal, Austria. Canadian Mineralogist 40: 849-869.
Vaughan, D. and Craig, J., 1997- Sulfide ore mineral stabilities, morphologies and intergrowth textures, In: Barnes, H.L., (eds.), Geochemistry of hydrothermal ore deposits, 3rd edition. New York, Wiley: 367−434.
Warren, I., Simmons, S. F.  and Mauk, J. L., 2007- Whole- rock geochemical techniques for evaluating hydrothermal alteration, mass changes, and compositional with epithermal Au-Ag mineralization. Economic Geology 102: 923-948.
White, N. C. and Hedenquist, J. W., 1995- Epithermal gold deposits: styles, characteristics and exploration. Society of Economic Geologists, Newsletter 23: 9-13.
Wiggins, L. B. and Craig, J. R., 1980- Reconnaissance of the Cu–Fe–Zn–S system: sphalerite phase relationships. Economic Geology 75: 742–751.