ژنز کانسارهای اکسید آهن- آپاتیت: بر پایه مطالعه آپاتیت‌های پهنه بافق- ساغند، ایران مرکزی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکترا، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 دانشیار، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران

3 دانشیار، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد اسلامشهر، تهران، ایران

4 استادیار، گروه زمین‌شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

منشأ کانسارهای اکسید آهن- آپاتیت (IOA) کم Ti و یا به عبارتی کانسارهای آهن نوع کایرونا مدت‌ها مورد بحث بوده و نظرات بسیاری از جمله ماگمایی، گرمابی، ماگمایی- گرمابی، سازند آهن نواری و رسوبی- بروندمی در این باره ارائه شده است. پهنه فلززایی بافق- ساغند در ایران مرکزی میزبان کانسارهای سترگی از این نوع است که حدود 1500 میلیون تن سنگ آهن با عیار میانگین 55 درصد را شامل شده‌اند که می‌توان به کانسارهای چادرملو، چغارت، سه‌چاهون و اسفوردی اشاره کرد. کانی‌زایی آپاتیت در این کانسارها به فراوانی رخ داده است. تبلور آپاتیت در تمرکز عناصری همچون U، Th، Sr، Y و REE مؤثر است. بنابریان مطالعه ژئوشیمی آپاتیت به منظور بررسی منشأ این کانسارها مدنظر قرار گرفت. آپاتیت‌های مورد مطالعه، غنی‌شدگی از Y، Na، Si را نشان می‌دهند و مقدار بسیار ناچیزی از Cl دارند. مجموع عناصر خاکی کمیاب در این آپاتیت‌ها میان 36/0 تا 25/2 % است که غنی‌شدگی از LREE، تفریق شدید میان LREE و HREE و بی‎هنجاری به شدت منفی  Eu(256/0 تا 69/0) را نشان می‌دهند. مقدار Sr و Y در آپاتیت‌ها به ترتیب میان 165 تا 365 ppm و 743 تا 1410 ppm است. از دید محتوای F-OH-Cl آپاتیت‌ها در دامنه هیدروکسیل- فلوروآپاتیت جای دارند. نتایج حاصل با داده‌های دیگر کانسارهای این نوع کانه‌زایی (کایرونا، ال‌لاکو، آباگونگ، آونیک و غیره) مشابه هستند. این آپاتیت‌ها ارتباطی با فعالیت ماگمایی کربناتیتی ندارند و در دامنه کانسارهای نوع کایرونا و سنگ‌های مافیک قرار می‌گیرند. بر پایه اساس ژئوشیمی آپاتیت‌های مورد مطالعه، رویداد کانی‌زایی در ابتدا در ارتباط با نفوذ توده‌های تونالیت- ترونجمیت- گرانودیوریت، دیوریت و گرانیت، مرتبط با فرورانش حاشیه‌ی قاره به سن 525 تا532 میلیون سال پیش بوده است که در واحد آتشفشانی- رسوبی کامبرین (میزبان کانی‌زایی) نفوذ کرده‌اند. سپس، کانی‌زایی در اثر فعالیت‌های گرمابی وابسته به نفوذ توده‌های آلکالن (سینیت و مونزوسینیت) رخ داده است. در نتیجه، کانسارهای اکسید آهن- آپاتیت کم Ti در پهنه بافق- ساغند در ارتباط با فرایند‌های ماگمایی- گرمابی تشکیل شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

The genesis of iron oxide-apatite (IOA) deposits: evidence from the geochemistry of apatite in Bafq-Saghand district, Central Iran

نویسندگان [English]

  • S. A. Majidi 1
  • M. Lotfi 2
  • M. H. Emami 3
  • N. Nezafati 4
1 Ph.D., Department of Geology, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Assosiate Professor, Department of Geology, Islamic Azad University, North Tehran Branch, Tehran, Iran
3 Assosiate Professor, Department of Geology, Islamic Azad University, Islamshahr Branch, Tehran, Iran
4 Assistant Professor, Department of Geology, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]

The Origin of Iron Oxide-Apatite deposits (IOA) with low Ti or Kiruna type deposits has long been a matter of debate. In this case, several provenances have been proposed for these deposits which include: magmatic, magmatic-hydrothermal, hydrothermal, banded iron formations, and sedimentary-exhalative. Bafq-Saghand metallogenic zone is located in central Iran and hosts several large IOA type deposits including Chadormalu, Choghart, Se-Chahun, and Esfordi with nearly ~1500 mt ore with an average grade of 55%.  Mineralization of REE-rich apatite is very common in these deposits, an issue that could be utilized for the study of their genesis. Fifteen apatite samples from the deposits of Chadormalu, Choghart, Se-Chahun, and Esfordi were taken and analyzed using LA ICP-MS. According to the geochemical analysis, the apatite of the abovemnetioned deposits show high enrichment of Y, Na, and Si, while very low content of Cl. Total REE content varies from 0.36-2.25% in which the LREE show an enrichment indicating strongly fractionation from HREE. Strong negative Eu anomaly (0.69-0.256) is observed. Sr and Y contents in apatites are 165-365 and 743-1410 ppm, respectively. The Fe-OH-Cl diagram shows that apatites is situated in the Hydroxil-fluoroapatite domain. The results show that these deposits are similar to those of IOA type deposits (e.g. Kiruna, El Laco, Abagong, Avnik, etc.). Apatite mineralization is unlikely related to carbonatitic magmatism, but situated in the Kiruna type and mafic rocks domain. The main mineralization event was likely related to tonalite-trondhjemite-granodiorite (TTG) and diorite-granite of arc magmatism (525-532 Ma) which were intruded into the Cambrian volcano sedimentary units (as country rock). Then the hydrothermal processes following alkaline intrusion (syenite and monzosyenite) led to mineralization. In general, the iron oxide-apatite (IOA) mineralization with low Ti has occurred through the magmatic-hydrothermal processes in the Bafgh-Saghand zone.

کلیدواژه‌ها [English]

  • Kiruna type deposits
  • Geochemistry
  • Rare earth elements
  • Magmatic-Hydrothermal
  • Bfaq-Saghand
  • Central Iran

References

Aftabi, A., Mohseni, S., Babeki, A. and Azaraien, H., 2009- Fluid inclusion and stable isotope of the Esfordi Apatite-Magnetite deposit, Central Iran-a discussion. Economic geology, 104(1), 137-139.

Alavi, M., 1991- Tectonic map of the Middle East. Geological Survey of Iran. Scale, 1:5,000,000.

Ayers, J. C. and Watson, E. B., 1993- Apatite/fluid partitioning of rare-earth elements and strontium: Experimental results at 1.0 GPa and 1000 C and application to models of fluid-rock interaction. Chemical Geology, 110(1), 299-314.

Barton, M. D. and Johnson, D. A., 1996- Evaporitic-source model for igneous-related Fe oxide–(REE-Cu-Au-U) mineralization. Geology24(3), 259-262.

Belousova, E. A., 2000- Trace elements in zircon and apatite: application to petrogenesis and mineral exploration. Macquarie University.

Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. and Fisher, N. I., 2002- Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1), 45-69.

Belousova, E. A., Walters, S., Griffin, W. L. and O'Reilly, S. Y., 2001- Trace‐element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48(4), 603-619.

Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265.

Bonyadi, Z., Davidson, G. J., Mehrabi, B., Meffre, S. and Ghazban, F., 2011- Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chemical Geology, 281(3), 253-269.

Bookstrom, A. A., 1977- The magnetite deposits of El Romeral, Chile.Economic Geology72(6), 1101-1130.

Boomeri, M., 2012- Rare earth minerals in Esfordi magnetite-apatite ore deposit, Bafq district. Geoscience, 22(85), 71-82.

Chai, F., Yang, F., Liu, F., Santosh, M., Geng, X., Li, Q. and Liu, G., 2014- The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt: a Kiruna-type iron deposit. Ore Geology Reviews, 57, 482-497.

Clark, A. H. and Kontak, D. J., 2004- Fe-Ti-P oxide melts generated through magma mixing in the Antauta subvolcanic center, Peru: implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Economic Geology99(2), 377-395.

Daliran, F., 1990- The magnetite apatite deposit of Mishdovan. Eastcentral Iran, An alkaline rhyolite hosted “Kiruna Type” occurrence in the Bafq metallotect (Mineralogic, Petrographic and geochemical study of the ores and the host rocks): Heidelberger geowiss Abh, 37.

Daliran, F., 2002- Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. Hydrothermal iron oxide copper-gold and related deposits, 2, 303-320.

Darvishzadeh, A., 1983- Investigation on Esfordi phosphate deposit. Journal of Science, University of Tehran. 2-24.

Foose, M. P. and McLelland, J. M., 1995- Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu–U–Au–rare earth element) deposits and tectonic implications. Geology23(7), 665-668.

Förster, H. and Borumandi, H., 1971- Jungpräkambrische Magnetit-Lava und Magnetit-Tuffe aus dem Zentraliran. Naturwissenschaften, 58(10), 524-524.

Förster, H. and Jafarzadeh, A., 1994- The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field. Economic Geology, 89(8), 1697-1721.

Frietsch, R. and Perdahl, J. A., 1995- Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews, 9(6), 489-510.

Frietsch, R., 1978- On the magmatic origin of iron ores of the Kiruna type. Economic Geology, 73(4), 478-485.

Frutos, J., 1975- Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile. Economic Geology70(5), 988-990.

Gleason, J. D., Marikos, M. A., Barton, M. D. and Johnson, D. A., 2000- Neodymium isotopic study of rare earth element sources andmobility in hydrothermal Fe oxide (Fe–P–REE) systems. Geochim. Cosmochim. Acta 64, 1059–1068.

Groves, D. I., Bierlein, F. P., Meinert, L. D. and Hitzman, M. W., 2010- Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits.Economic Geology105(3), 641-654.

Haghipour, A. and Pelissier, G., 1977- Geological map of the Biabanak-Bafq area. Geological survey of Iran.

Haghipour, A., Bolourchi, M., Houshmandzadeh, A., Sabzehei, M., Stöcklin, J., Hubber, H., Sluiter, W. and Aghanabati, A., 1977- Exploration Text of the Ardekan Quderanglemap. Geol. Surv. of Iran. (Tehran, Iran, 88 pp.).

Henriquez, F. and Martin, R. F., 1978- Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. The Canadian Mineralogist16(4), 581-589.

Henriquez, F. and Nyström, J. O., 1998- Magnetite bombs at El Laco volcano, Chile. GFF120(3), 269-271.

Hildebrand, R. S., 1986- Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Economic Geology81(3), 640-659.

Hitzman, M. W., 2000- Iron Oxide-Cu-Au Deposits: What, Where, When, and Why: in Porter, T.M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective, v. 1, PGC Publishing, Adelaide, p. 9-25.

Hitzman, M. W., Oreskes, N., and Einaudi, M. T., 1992- Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu- U- Au- REE) deposits. Precambrian Research58(1), 241-287.

Högdahl, K., Jonsson, E., Nilsson, K. and Troll, V., 2012- The Kiruna-type apatite-iron oxide system in central Sweden: geology and geochemical character. In EGU General Assembly Conference Abstracts (Vol. 14, p. 14336).

Hou, T., Zhang, Z. and Kusky, T., 2011- Gushan magnetite–apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: hydrothermal or Kiruna-type?. Ore Geology Reviews, 43(1), 333-346.

Huckriede, R., Kürsten, M. and Venzlaff,  H., 1962- Zur geologie des gebiets zwischen Kerman und Saghand (Iran): Beihefte zum Geologischen Jahrbuch, v. 51, p. 197.

Hushmandzadeh, A. R., 1969- Metamorphisme et granitisation du massif Chapedony (Iran Central). Universite Scientifique et Medicale de Grenoble, France, 242 p.

Jami, M., 2005- Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran (Doctoral dissertation, University of New South Wales).

Jami, M., Dunlop, A. C. and Cohen, D. R., 2007- Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran. Economic geology, 102(6), 1111-1128.

Jonsson, E., Troll, V. R., Högdahl, K., Harris, C., Weis, F., Nilsson, K. P. and Skelton, A., 2013- Magmatic origin of giant ‘Kiruna-type’apatite-iron-oxide ores in Central Sweden. Scientific reports, 3.

Kargaranbafghi, F., Foeken, J. P., Neubauer, F. and Stuart, F. M., 2008- How Chapedony metamorphic core complex (Central Iran) became cool and how it was overprinted by Neogene asthenosphere uprise: Inferences from (U-Th)/He thermochronology. In Geophysical Research Abstracts (Vol. 10).

Kargaranbafghi, F., Neubauer, F. and Genser, J., 2015- Rapid Eocene extension in the Chapedony metamorphic core complex, Central Iran: Constraints from 40 Ar/39 Ar dating. Journal of Asian Earth Sciences, 106, 156-168.

Kargaranbafghi, F., Neubauer, F., Genser, J., Faghih, A. and Kusky, T., 2012- Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation. Tectonophysics, 564, 83-100.

Kolker, A., 1982- Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis.Economic Geology77(5), 1146-1158.

Larson, A. C. and Oreskes, N., 1993- Evidence of vaporphase transport in the genesis of magnetite deposits at El Laco, Chile. EOS Transactions of the American Geophysical Union74, 651.

Larson, A. C., 1994- Evidence of pneumatolytic processes in the genesis of magnetite deposits at El Laco, Chile, MA Thesis, Dartmouth College, Hanover, HN, 51p.

Masoodi, M., Yassaghi, A., Nogole Sadat, M. A. A., Neubauer, F., Bernroider, M., Friedl, G., Genser, J. and Houshmandzadeh, A., 2013- Cimmerian evolution of the Central Iranian basement: Evidence from metamorphic units of the Kashmar–Kerman Tectonic Zone. Tectonophysics, 588, 189-208.

Meyer, C., 1988- Ore deposits as guides to geologic history of the Earth. Annual Review of Earth and Planetary Sciences, 16, 147-171.

Mohseni, S. and Aftabi, A., 2012- Comment on “Significance of apatite REE depletion and monazite inclusions in the brecciated Sehchahun iron oxide–apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry” by Bonyadi, Z., Davidson, GJ, Mehrabi, B., Meffre, S., Ghazban, F [Chem. Geol. 281, 253–269]. Chemical Geology, 334, 378-381.

Mokhtari, M. A. A., Zadeh, G. H. and Emami, M. H., 2013- Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. Journal of Earth System Science, 122(3), 795-807.

Moore, F. and Modabberi, S., 2003- Origin of Choghart iron oxide deposit, Bafq mining district, Central Iran: new isotopic and geochemical evidence. Journal of Sciences Islamic Republic of Iran, 14(3), 259-270.

Mücke, A. and Younessi, R., 1994- Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineralogy and Petrology, 50(4), 219-244.

Naslund, H. R., Aguirre, R., Dobbs, F. M., Henriquez, F. J. and Nyström, J. O., 2000- The origin, emplacement and eruption of ore magmas. In IX Congreso Geologico Chileno Actas (Vol. 2, pp. 135-139).

Nyström, J. O. and Henríquez, F., 1994- Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry, Econ. Geol. 89, 820-839.

Oreskes, N., Rhodes, A. L., Sheets, S. A., and Espinoza, S., 1995- Evidence for formation of magnetite by hydrothermal processes at El Laco, Chile, Part I: Field relations and alteration assemblages, Geol. Soc. Am. Abstr. w. Progr. 27, A467.

Oreskes, N., Rhodes, A.L., Rainville, K., Sheets, S.A., Espinoza, S. and Zentilli, M., 1994- Origins of magnetite deposits at El Laco, Chile: new evidence from field studies, fluid inclusions, stable isotopes, and fission track analysis, Geol. Soc. Am. Abstr. w. Progr. 26, A379.

Parák, T., 1975- The origin of the Kiruna iron ores. Sveriges Geologiska Undersokning.

Philpotts, A. R., 1967- Origin of certain iron-titanium oxide and apatite rocks.Economic Geology62(3), 303-315.

Piccoli, P. M., and Candela, P. A., 2002- Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1), 255-292.

Porter, T. M., 2000- Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective. Adelaide: PGC Publishing, 1, pp 349..

Porter, T. M., (ed.) 2002- In: Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective. Adelaide: PGC Publishing, 2, pp. 378.

Ramezani, J. and Tucker, R. D., 2003- The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(7), 622-665.

Ramezani, J., 1997- Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand area, Central Iran (Doctoral dissertation, Washington University).

Rhodes, A. L. and Oreskes, N., 1995a- Magnetite deposition at El Laco, Chile: implications for Fe-oxide formation in magmatic-hydrothermal systems. Giant ore deposits-II: Controls on the scale of orogenic magmatic-hydrothermal mineralization (Clark, AH, 582-622.

Rhodes, A. L. and Oreskes, N., 1995b- Evidence for formation of magnetite by metasomatic alteration of host rock andesite, El Laco, Chile, Part II: Rare earth (REE) trace element, and oxygen isotope data, Geol. Soc. Am. Abstr. W. Progr. 27, A467.

Rhodes, A. L. and Oreskes, N., 1996- Magnetite deposits at El Laco, Chile: a transition between magmatic and epithermal processes or all hydrothermal?, Geol. Soc. Am. Abstr. W. Progr.28, A335.

Rhodes, A. L. and Oreskes, N., 1999- Oxygen isotope composition of magnetite deposits at El Laco, Chile: Evidence of formation from isotopically heavy fluids: in Skinner, B.J., ed., Geology and ore deposits of the Central Andes, Society of Economic Geologists, Special Publication 7, p. 333-351.

Rhodes, A. L., Oreskes, N. and Sheets, S. A., 1997- Recognition of a paleo-hydrothermal system responsible for magnetiteformation at El Laco, Chile, EOS Tran. Amer. Geophys. Union 78, F748.

Rhodes, A. L., Oreskes, N. and Sheets, S., 1999- Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile: in Skinner, B.J., ed., Geology and ore deposits of the Central Andes, Society of Economic Geologists, Special Publication 7, p. 299-332.

Roeder, P. L., MacArthur, D., Ma, X. P., Palmer, G. R. and Mariano, A. N., 1987- Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist, 72(7-8), 801-811.

Roberts, D. E. and Hudson, G. R. T., 1983- The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia. Economic Geology, 78(5), 799-822.

Sahandi, M., Baumgartner, S. and Schmidt, K., 1984- Contributions to the stratigraphy and tectonics of the Zeber-Kuh range (east Iran). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 168, 345-357.

Samani, B. A., 1988- Metallogeny of the Precambrian in Iran. Precambrian research, 39(1), 85-106.

Sengör, A. M. C., 1987- Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting: Annual Review of Earth and Planetary Sciences, v. 15, p. 213–244.

Sha, L. K. and Chappell, B. W., 1999- Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22), 3861-3881.

Sheets, S. A., 1997- Fluid inclusion study of the El Laco magnetite deposits, Chile: M.Sc. thesis, Dartmouth College, Hanover, New Hampshire, 94 p.

Sheets, S. A., Oreskes, N., Rhodes, A. L., Bodnar, R. J. and Szabo, C., 1997- Fluid inclusion evidence for hydrothermal origin for magnetite-apatite mineralization at El Laco, Chile, Geol. Soc. Am. Abstr. w. Progr. 29, A50.

Sillitoe, R. H. and Burrows, D. R., 2002- New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile: Econ. Geol., v. 97, p. 1101-1109.

Sillitoe, R. H. and Burrows, D. R., 2003- New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile - Reply: Econ. Geol., v. 98, 1501-1502.

Soheili, M. and Mahdavi, M., 1991- Geological Map of Esfordi: Tehran. Geological Survey of Iran, scale, 1(100), 000.

Stöcklin, J., 1968- A review of the structural geology and tectonics of Iran. Bull. Am. Assoc. Petr. Geol, 52, 1228-1258.

Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.

Sverjensky, D. A., 1984- Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1), 70-78.

Takin, M., 1972- Iranian geology and continental drift in the Middle East. Nature, 235, 147-150.

Toplis, M. J. and Dingwell, D. B., 1996- The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochimica et Cosmochimica Acta, 60(21), 4107-4121.

Torab, F. M. and Lehmann, B., 2007- Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3), 347-363.

Torab, F. M., 2008- Geochemistry and Metallogeny of Magnetite Apatite Deposits of the Bafq Mining District, Central Iran. Univ.-Bibliothek.

Valizadeh, M. V. and Sharifi, A., 2004- Geochemical study of “Arash Syenite” (Central Iran) with special emphasis on alkali metasomatism. Geosciences, 12(53), 2-15.

Vapnik, Y., Bushmin, S., Chattopadhyay, A. and Dolivo-Dobrovolsky, D., 2007- Fluid inclusion and mineralogical study of vein-type apatite ores in shear zones from the Singhbhum metallogenetic province, West Bengal, India. Ore Geology Reviews, 32, 412-430.

Verdel, C., Wernicke, B. P., Ramezani, J., Hassanzadeh, J., Renne, P. R. and Spell, T. L., 2007- Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geological Society of America Bulletin, 119(7-8), 961-977.

Westhues, A., Hanchar, J. M., Whitehouse, M. J. and Fisher, C. M., 2012- Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden. In AGU Fall Meeting Abstracts (Vol. 1, p. 03).

Williams, G. J. and Houshmandzadeh, A., 1966- A petrological and genetic study of the Choghart iron ore body and the surrounding rocks; Geological Survey of Iran, 18p.

Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., Oliver N, H, S. and Marschik, R., 2005- Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Economic Geology, 371-405.

Wood, S. A., 1990a- The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82, 159-186.

Wood, S. A., 1990b- The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350 C at saturation water vapor pressure. Chemical Geology, 88(1), 99-125.

Yang, F., Mao, J., Liu, F., Chai, F., Geng, X., Zhang, Z., Guo, X. and Liu, G., 2013- A review of the geological characteristics and mineralization history of iron deposits in the Altay orogenic belt of the Xinjiang, Northwest China. Ore Geology Reviews, 54, 1-16.

Yassaghi, A. and Masoodi, M., 2011- A metamorphic core complex model for the host of uranium mineralization in the Khoshoumi Mountain, central Iran. Resource geology, 61(3), 259-269.

Yu, J., Chen, Y., Mao, J., Pirajno, F. and Duan, C., 2011- Review of geology, alteration and origin of iron oxide–apatite deposits in the Cretaceous Ningwu basin, Lower Yangtze River Valley, eastern China: implications for ore genesis and geodynamic setting. Ore Geology Reviews, 43(1), 170-181.