بررسی ویژگی‌های ژئوشیمیایی و رسوب شناسی سازند داریان در منطقه فارس: مطالعه موردی کوه سیاه و چاه شماره 1 سبزپوشان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران.

2 گروه زمین‌شناسی، دانشکده علوم‌زمین، دانشگاه شهید بهشتی، تهران، ایران

3 شرکت ملی مناطق نفت خیز جنوب، اهواز، ایران.

چکیده

در این بررسی ژئوشیمی و محیط رسوبی سازند داریان با سن کرتاسه پیشین (آپتین- آلبین) در برش سطح الارضی تاقدیس کوه سیاه و مقطع تحت الارضی چاه شماره 1 سبزپوشان مورد بررسی قرار گرفت. بر اساس بررسی‌های سنگ‌نگاری 12 ریزرخساره مربوط به 5 کمربند رخساره‌ای میان‌کشندی (Intertidal)، لاگون (Lagoon)، پشته‌های ماسه‌ای (Shoal)، دریای باز کم ژرفا (Shallow open marine) و دریای باز ژرف (Deep open marine) شناسایی شد. الگوی ریزرخساره­های دیده شده نشانگر نهشته شدن این توالی بر روی یک سکوی کربناتی از نوع رمپ است. رسم مقادیر عنصری عناصر اصلی (Ca, Mg) و فرعی (Sr, Mn, Na, Fe) و ایزوتوپی اکسیژن 18 و کربن 13 بیانگر آن است که فرایندهای دیاژنزی به‌طور چیره تدفینی کربنات‌های این سازند را در یک محیط نیمه بسته تا نیمه باز تحت تأثیر قرار داده است. بر اساس بررسی‌های سنگ‌نگاری فرایندهای مهم دیاژنزی سازند داریان شامل سیمانی شدن، تراکم فیزیکی و شیمیایی فرایندهای جانشینی مانند پیریتی شدن و سیلیسی شدن است. تخلخل‌های دیده شده در این مقاطع، ثانویه و از انواع حفره‌ای، شکستگی و کانالی هستند. دمای تشکیل این سنگ‌آهک­ها بر اساس سنگین‌ترین ایزوتوپ اکسیژن در حدود 5/28 درجه سانتی‌گراد برآورد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemical and Sedimentology Characteristics of Dariyan Formation in Fars Area, Case Study: Kuh-e Siyah and Sabzpushan Well# 1

نویسندگان [English]

  • M. H. Adabi 1
  • R. Abbasi 2
  • H. Ghalavand 3
1 Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
2 Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
3 Oil-rich southern areas of the company, Ahwaz, Iran.
چکیده [English]

In this investigation Dariyan Formation with the age of Lower Cretaceous (Aptian- Albian) were studied for geochemical and sedimentology characteristics in the surface section at Kuh-e Siyah Anticline and subsurface section Sabzpushan well number 1. Based on petrographical studies 12 microfacies identified which are belonging to 5 facies belt, such as: intertidal, lagoon, shoal, shallow open marine and deep open marine. The observed facies patterns indicated a carbonate ramp depositional environment. Important diagenetic processes were observed in Dariyan Formation including cementation, physical and chemical compaction and replacement processes such as pyritization and silicification. Prosities in these sections are secondary, including vuggy, fracture and channel types. Major and minor elements and carbon and oxygen isotopes studies are indicated that aragonite was original carbonate mineralogy for this Formation. The plots of elemental values also are illustrated that mainly burial diagenetic processes have been affected this formation in semi- close to semi- open system. A temperature calculation based on the heaviest oxygen isotope value indicates that the very early, shallow burial temperature was around 28.5°C during Dariyan carbonate deposition.

کلیدواژه‌ها [English]

  • Geochemical
  • Sedimentology
  • Diagenetic Processes
  • Dariyan formation
  • Microfacies

آدابی، م. ح.، 1383-  ژئوشیمی رسوبی، انتشارات آرین زمین، 448 صفحه.

پروانه نژاد شیرازی، م.، 1380- میکرواستراتیگرافی زمین‌های کرتاسه در زاگرس (فارس داخلی) در محور شیراز-  ده‌بید با نظر خاص بر آلگ‌ها، پایان نامه دکتری، دانشگاه شهید بهشتی، 360 صفحه.

قلاوند، ه.، 1375- لیتواستراتیگرافی و بیواستراتیگرافی سازندهای داریان و کژدمی در جنوب غرب ایران (نواحی فارس و فروافتادگی دزفول)، پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی.

مؤسسه جغرافیایی و کارتوگرافی گیتاشناسی، 1387- اطلس راه‌های ایران، چاپ اول، 306 صفحه.

مطیعی، ه.، 1382- زمین‌شناسی ایران، چینه‌شناسی زاگرس، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.

 

Refrences 

Abbasi, R. & Adabi, M. H., 2009- Application of cathodoluminescence to recognize diagenetic trends of carbonate rocks, International conference of Microraman spectroscopy and luminescence studies in the earth and planetary sciences, American Institute of Physics Conference Proceedings, 1163: 177-186. 

Adabi, M. H., & Asadi Mehmandosti, E., 2008- Microfacies and geochemistry of the Ilam formation in the Tang-e Rashid area, Izeh, S.W. Iran: Journal of Asian Earth Sciences,33:267-277.

Adabi, M. H., & Rao, C. P., 1991- Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonate (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, 72:253-267.

Adabi, M. H., & Rao, C. P., 1996- Petrographic, elemental and isotopic criteria for the recognition of carbonate mineralogy and climates during the Jurassic (e.g., from Iran and England): 13the Geological Convension, Australia, (Abstract), p. 6.

Adabi, M. H., 1996- Sedimentology and geochemistry of carbonates from Iran and Tasmania, Ph.D.thesis (Unpublished). University of Tasmania Australia. 470 p.

Adabi, M. H., Salehi, M. A. & Ghabeishavi, A., 2010- Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran . Journal of Asian Earth Sciences, 39: 148-160.

Amodio,  S.,  2006-  Foraminifera  diversity  changes  and  paleoenvironmental  analysis:the  Lower Cretaceous  shallow-water  carbonates  of  San  Lorenzello,  Campanian  Apennines,  southern  Italy, Facies 52: 53-67.

Anderson, T. F., & Arthur, M. A., 1983- Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenviromental problems. in: Stable isotope in sedimentary geology, Society of Economic Paleontologists and Mineralogists, Short Course, 10:1-151.

Bachmann, M. & Hirsch, F., 2006- Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change, Cretaceous Research, 27:487-512.

Banner, F. T. & Simmons, M. D., 1994- Calcareous algae and foraminifera water-depth indicatiors: an example from the early cretaceous carbonates of northeast Arabia. In: Micropaleontology and Hydrocarbon Exploration in Middle East (Ed. M.D. Simmons), British Micropaleontol. Soc. Publ. Series. Chapman & Hall, London. pp. 243-252.

Barron, E. J., 1983- A warm equable Cretaceous: the nature of the problem, Earth Sciences Review, 19:305-338.

Brand, U. & Morrison, J.O., 1987- Biogeochemistry of fossil marine invertebrates: Geosci. Canada.14:85- 107.

Brand, U. & Veizer, J., 1980- Chemical diagenesis of multicomponent carbonate system, II: stable isotopes, Journal of Sedimentary Petrology, 51:987-997.

Burchette, T. P. & Wright, V. P., 1992- Carbonate ramp depositional systems, Sedimentary Geology, 79:3-35.

Calner, M., 2003- A lowstand epikarstic intertidal flat from the middle Silurian of Gotland, Sweden, Sed. Geol. 148: 389-403.

Choquette, P. W. & James, N. P., 1990- Limestones-The burial diagenetic environment, in McIlreath, I., and Morrow, D., eds., Diagenesis. Geoscience Canada reprint series 4: 75–111.

Choquette, P. W. & Pray, L. C., 1970- Geologic nomenclature and classification of porosity in sedimentary carbonates. Amer. Ass. Petrol. Geol. Bull. 54: 207-250.

Dickson, J. A. D., 1965- A modified staining technique for carbonate in thin section, Nature, 205:587.

Dunham, R. J., 1962- Classification of carbonate rocks according to depositional texture, American Association of Petroleum Geologist, Memoir, 1:108-121.

Flügel, E., 2004- Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Springer Verlag, Berlin, 976 p.

GroÖcke, D. R., Price, G. D., Rufell, A. H., Mutterlose, J. & Baraboshkin, E ., 2003- Isotopic evidence for Late Jurassic-Early Cretaceous climate change, Palaeogeography Palaeoclimatology Palaeoecology, 202:97-118.

Halley, R. B., Harris, P. M. & Hines, A. C. 1983- Bank margin environment. –In: Scholle, P. A., Bebout, D. G., Moore, C. H. (eds.): Carbonate depositional environments, - Amer. Ass. Petrol. Geol. Mem., 33, 463-506.

Hottinger, L., 1982- Larger Foraminifera, giant cells with a historical background Naturwissenschaften, 69: 361-371.

Hottinger, L., 1996- Sel nutritifs et biosedimentation. Society Geology of France. Mem 169: 99-107. 

Hottinger, L., 1997- Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations: Bull. Society Geology of France. 168: 491-505.

Immenhauseret, A., Schlager, W., Burns, S. J., Scott, R. W., Geel, T., Lehman, J. & Van der Gaast, L. J. A., 1999- Late Aptian to late Albian sea level fluctuations constrained by geochemical and biological evidence (Nahr Umar Formation, Oman). Journal of Sedimentary Research 69:434-466.

James, G. A. & Wynd, J. G., 1965- Stratigraphic nomenclature of Iranian Oil Consortium Agreement Area, American Association of Petroleum Geologist, Bulletin, 49:2182-2245.

Kelth, L. M. & Weber, J. N., 1964- Carbone and oxygen isotopic composition of limestones and fossils, Geochimica et Cosmochimica Acta, 28:1787-1816.

Koch, R., Moussavian, E., Ogorelec, B., Skaberne, D., I., & Bucur, I., 2002- Development of a Lithocodium (syn.Bacinella irregularis)-reef-mound-apatch reef within middle Aptian lagonal limestone sequence near Nova Gorica (SabotinMountain, W-Slovenia): Jour., Geologija., v.45, p.71-90.

Lecuyer, C. & Allemand, P., 1999- Modelling of the oxygen isotope evolution of seawater: Implications for the climate interpretation of the δ 18 O of marine sediments, Geochimica et Cosmochimica Acta, 63:351-361.

Lucia, F. J., 2007- Carbonate Reservoir Characterization: An Integrated Approach, Springer Berlin, 336p.

Marshall, J. D., 1992- Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation, Geological Magazine. 129: 143-160.

Milliman J. D. & Müller, J., 1977- Characteristics and genesis of shallow-water and deep-sea limestones. in: Anderen, N.R., & Malahoff, A., (eds.), The fate of fossil fuel CO2 in the oceans. New York (Plenum), p. 655-672.

Milliman, J. D., 1974- Marine Carbonates Recent Sedimentary Carbonates, Part 1, Speringer- Verlag, Berlin, 375 p.

Morse, J. W. & Mackenzie, F. T., 1990- Geochemistry of Sedimentary Carbonates, Development in Sedimentology, Amsterdam (Elsevier), 48:707 p.

Mucci, A., 1988- Manganese uptake during calcite precipitation from seawater: conditions leading to the formation of a pseudokutnahorite: Geochimica et Cosmochimica Acta, 52: 1859- 1868. 

Pingitore, N. E., 1978- The behavior of Zn2+ and Mn2+ during carbonate diagenesis: theory and applications: Journal of Sedimentary Petrology, v. 48, p. 799-814.

Pittet, B., Van Bachman, F., Hillgartner, H., Razzin, P., Grotsch, J. & Drostes, H., 2002- Ecological succestion, paleoenvironmantal change, and depositional sequences of Barremian- Aptian Shallow- Water carbonates in northern Oman: Sedimentology 49: 555-581.

Rao, C. P. & Adabi, M. H., 1992- Carbonate minerals, major and minor elements and oxygen and carbon isotopes  and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia, Marine Geology, 103:249-272.

Rao, C. P. & Amini, Z. Z., 1995- Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonate, western Tasmania, Australia, Carbonates and Evaporites, 10:114-123.

Rao, C. P., & Nelson, C. S., 1992- Oxygen and carbon isotope fields for temperate shelf carbonates from Tasmania and New Zealand, Marine Geology, 103:273-286.

Rao, C. P., 1990- Geochemical characteristics of cool-temperate carbonates, Tasmania, Australia, Carbonates and Evaporites, 5:209-221.

Rao, C. P., 1991- Geochemical differences between subtropical (Ordovician), cool-temperate (recent and Pleistocene) and subpolar carbonates, Tasmania, Australia, Carbonates and Evaporites, 6:83-106.

Rao, C. P., 1996- Modern Carbonates, Tropical, Temperate, Polar. Introduction to Sedimentology and Geochemistry, Hobart (Tasmania).206 p. 

Read, J. F., 1985- Carbonate ramp to basin transitions and foreland basin evolution, Middle Ordovician, Virginia applications American Association of Petroleum Geologist, Bulletin. 64: 1575-1612.

Shackelton, N. J. & Kennett, J. P., 1975- Palaeotemperature history of Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP site 277, 279 and 281. in: Kennett, J.P., & Houtz, R.E., (eds.), Initial Reports of the Deep-Sea Drilling Project, ΧΧΙΧ: U.S. Govt, Printing Office, Washington D.C., p. 743-755.

Simmons, M. D., Whittaker, J. E. & Jones, R. W.,  2000- Orbitolinids from the Cretaceous sediments  of  the  Middle East a revision of the F.R.S. Henson and Associates Collection. In: Proceeding of the 5th international workshop on Agglutinated Foraminifera (Eds M.B. Hart, M.A. Kaminsky and C.V. Smart), Grzybowski found. Special Publication, 7: 411-437.

Veizer, J., 1983- Trace elements and isotopes in sedimentary carbonates, Reviews in Mineralogy and Geochemistry; January 1983; 11: 265-299.

Wilson, J. L., 1975- Carbonate Facies in Geologic History, New York (Springer), 471 p.

Winefield, P. R.,  Nelson, C. S.,  Hodder,  A. P. W.,  1996-  Discriminating  temperate  carbonates  and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11: 19–31.