فرایندهای مؤثر در تکوین توده نفوذی کوه‌دم، شمال خاور اردستان: با تکیه بر شواهد ژئوشیمیایی و ایزوتوپی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

2 دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران.

3 گروه زمین‌شناسی، دانشگاه پیام نور، تهران، ایران.

چکیده

توده نفوذی کوه‌دم بخشی از سنگ‌های ائوسن بالایی ایران مرکزی محسوب می‌شود. بر اساس اندیس رنگی این توده نفوذی به دو واحد اسیدی و حدواسط- مافیک قابل تقسیم است. واحد اسیدی دارای ترکیب سنگ‌شناسی مونزوگرانیت،گرانودیوریت، کوارتزمونزونیت و کوارتزمونزودیوریت است. در حالی که، واحد مافیک- حدواسط از مجموعه سنگ‌شناسی گابرو، دیوریت، کوارتز‌دیوریت، مونزودیوریت و مونزونیت تشکیل شده است. در واحد اسیدی حضور انکلاو‌های میکروگرانولار مافیک با ترکیب دیوریت، کوارتزدیوریت، مونزودیوریت و کوارتز مونزودیوریت به شکل آشکاری خودنمایی می‌کند. براساس داده‌های ژئوشیمیایی، فرایندهای اختلاط/ آمیختگی ماگمایی و تفریق بلوری نقش مهمی در تحول ماگمایی ناحیه دارند. همچنین توده نفوذی کوه‌دم میزان پایینی از عناصر TiO2 و ‍P2O5 همراه با نسبت پایین Nb/Zr را نشان می‌دهد که این موارد از ویژگی‌های سنگ‌های آذرین حاشیه فعال قاره‌ای به شمار می‌آید. نسبت‌های ایزوتوپی Sr و Nd  نشان‌دهنده آن است که این نسبت‌ها نه شبیه به ماگمای مشتق از پوسته و نه معادل با ماگمای مشتق از گوشته است، بلکه حد میانی ماگماهای پوسته‌ای و گوشته‌ای است. ماگمای تشکیل دهنده انکلاو‌ از نظر ترکیب ایزوتوپی به سوی ماهیت گوشته‌ای و ماگمای اسیدی ماهیت پوسته‌ای را نشان می‌دهد و توده نفوذی حد واسط- مافیک نسبت ایزوتوپی کم و بیش میان آنها  را دارد. این نتایج همراه با مطالعات صحرایی و سنگ‌نگاری، گواه فرایند اختلاط/ آمیختگی ماگمایی در توده نفوذی مورد نظر است و می‌توان گفت که ماگمای سازنده انکلاو‌ احتمالاً از گوشته بالایی حاصل و پس از استقرار در پوسته باعث گرم شدن سنگ‌های پوسته و ذوب بخشی پوسته زیرین می‌شود و بر اثر اختلاط مواد مذاب گوشته‌ای و پوسته‌ای، ماگمای مافیک تا حدواسط حاصل می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Effective Processes in Evolution of Kuh-e Dom Plutonism, NE Ardestan, the using of Geochemical and Isotopic Evidence

نویسندگان [English]

  • A. Kananian 1
  • F. Sarjoughian 2
  • J. Ahmadian 3
1 Department of Geology, School of Science, Tehran University, Tehran, Iran
2 Department of Geology, School of Science, Tehran University, Tehran, Iran
3 Department of Geology, Payam-e Noor University, Tehran, Iran
چکیده [English]

The Kuh-e Dom intrusion is a small section of Upper Eocene Urumieh- Dokhtar magmatic belt in the Central Iran tectonic zone. This intrusion is composed of two separate phases which include an acidic and intermediate- mafic units. The acidic rocks consist of monzogranite, granodiorite, quartz monzonite and quartz monzodiorite whereas the intermediate-mafic rocks comprise gabbro, diorite, quartz diorite, monzodiorite and monzonite. Mafic microgranular enclaves of dioritic, quartz dioritic, monzodioritic and quartz monzodioritic composition are common in the acidic rocks. Based on geochemical data, magma mixing along with fractional crystallization has important role in evolution of the plutonic rocks. Also, Kuh-e Dom intrusive rocks have low TiO2, P2O5 and Nb/Zr ratio which are characteristics of active continental margin. The isotopic signature of plutonic rocks is not exactly like those of mantle- or crustal-derived magma, but these rocks have some features commonly found both in the crustal and mantlic sources so that the enclaves tend to illustrate mantlic composition and the acidic rocks tend to show crustal composition, but the intermediate- mafic rocks are in the range from acidic rocks to enclaves. This result along with field and petrographical studies indicate that magma mixing/magma or mingling processes may play an important role in evolution of the intrusion. The upper mantle magma forming the microgranular enclaves, after emplacement in the crust may lead to partial melting of lower crust and because of magma mixing between crustal and mantlic melts, the mafic to intermediate rocks may form.
 

کلیدواژه‌ها [English]

  • Kuh-e Dom intrusion
  • Magma Mixing/Mingling
  • Isotopic Geochemistry
  • Microgranular Enclaves
  • Ardestan
کنعانیان، ع.، احمدیان، ج.، سرجوقیان، ف.، ١٣٨٧الف- شیمی برخی از کانی‌ها و ارزیابی دما و فشار در توده گرانیتوییدی کوه دم، شمال شرق اردستان، مجله بلورشناسی و کانی‌شناسی.١٦: ٤٩-٦٦.
کنعانیان، ع.، سرجوقیان، ف.، احمدیان، ج.، میرنژاد، ح.، ١٣٨٧ب- پتروژنز توده گرانیتوییدی کوه‌دم، شمال شرق اردستان، مجله علوم دانشگاه تهران. ٣٤: ٤١-٥٣.
کنعانیان، ع.، سرجوقیان، ف.، احمدیان، ج.، ١٣٨٧ج- منشأ آنکلاوهای میکروگرانولار در توده گرانیتوییدی کوه‌دم، شمال شرق اردستان، مجله پژوهشی دانشگاه اصفهان (علوم پایه). ٣٠: ١٣٩-١٦٦.
 
References
Defant, M. J., Jackson, T. E., Drummond, M. S., De Boer, J. Z., Bellon, H., Feigenson, M. D., Maury, R. C. & Stewart, R. H., 1992- The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview, Journal of the Geological Society, London, 149: 569–579.
Drummond, M. S. & Defant, M. J., 1990- A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons, Journal of Geophysics Research, 95: 21503–21521.
Holden, P., Halliday, A. N. & Stephens, W. E., 1987- Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330, 53–56.
Karsli, O., Chen, B., Aydin, F. & Şen, C., 2007- Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting, Lithos, 98: 67-96.
Leat, P. T., Jackson, S. E., Thorpe, R. S. & Stillman, C. J., 1986- Geochemistry of bimodal basalt-subalkaline/ peralkaline-rhyolite provinces within the southern British Caledonides. Journal of Geology Society London, 143: 259–276.
Lemaitre, R. W., Bateman, P., Dudek, A., Keller, J., Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensesen, H., Streckeisen, A., Woolley, A. R. & Zanettin, B., 1989- A Classification of Igneos Rocks and Glossary of Terms. Blackwell, Oxford, 193pp.
Lesher, C. E., 1990- Decoupling of chemical and isotopic exchange during magma mixing. Nature 344, 235–237.
Morata, D.,  Oliva, C., Cruz, R. D. l. & Suarez, M., 2005- The Bandurrias gabbro: Late Oligocene alkaline magmatism in the Patagonian Cordillera, Journal of South American Earth Sciences, 18: 147–162.
Pin, C., Binon, M., Belin, J. M., Barbarin, B., Clemens, J. D., 1990- Origin of microgranular enclaves in granitoids: equivocal Sr–Nd evidence from Hercynian rocks in the Central France. J. Geophys. Res. 95, 17821–17828.
Poli, G., Tommasini, S., Halliday, A. N., 1996- Trace elements and isotopic exchange during acid–basic magma interaction processes. Trans. R. Soc. Edinb. Earth Sci. 87, 225– 232.
Rios, D. C., Conceicao, H., Davis, D. W., PlaCid, J., Rosa, M. L. S., Macambira, M. J. B., McReath, I., Marinho, M. M. & Davis, W. J., 2007- Paleoproterozoic potassic–ultrapotassic magmatism: Morro do Afonso Syenite Pluton, Bahia, Brazil Precambrian Research, 154- 1-30.
Soesoo, A., 2000- Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia. Journal Geology Society. 157: 135–149.
Stern, C. R. & Killian, R., 1996- Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contribution to Mineralogy and Petrology, 123: 263–281.
Streckeisen, A. I. & LeMaitre, R. W., 1979- A chemical approximation, to the model QAPF classification of the igneous rocks, Neues Jahbuch fur mineralogy Ab-handlungen, 136: 169-206.
Technoexport, 1981- Detail geology prospecting in the Anarak Area Central Iran. Geological Survey of Iran, Report No: 9. 154p.
Treuil, M. & Joron, J. L., 1975- Utilisation des elements hygromagmatophiles pour la simplification de la modelisation quantitative des processus magmatiques. Exemples de l’Afar et de la Dorsale Medioatlantique. Rend. Soc. Italy Mineralogy and Petrology. 31: 125–174.
Wang, Q., Wyman, D. A., Xu, J., Jian, P., Zhao, Z., Li, C., Xu, W., Ma, J. & He, B., 2007- Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust Geochimica et Cosmochimica Acta 71: 2609–2636.
Weaver, B. L. & Tarney, J., 1984- Empirical approach to estimating the composition of the continental crust, Nature, 310: 575-577.
Wernick, E. & Menezes, A., 2001- The Late Precambrian K-alkaline magmatism in the Ribeira Fold Belt: a case study of the Piracaia Pluton, State of SaÄo Paulo, SE Brazil, and its potential mineralization (Cu, Zn, Gd)q, Journal of Asian Earth Sciences, 19: 347-373.
Wilson, M., 1989- Igneous petrogenetic, Chapman & Hall. 466p.
Wu, F. Y., Jahn, B. M., Wilde, S. A., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C. & Sun, D.Y., 2003- Highly fractionated I-type granites in NE Chine (I): geochronology and petrogenesis, Lithos, 66: 241-273.