بهینه سازی تعیین رده رخساره‌های پتروفیزیکی با تحلیل سریع مؤلفه های مستقل و تبدیل کسینوسی گسسته پایه K نزدیک ترین همسایه در میدان مارون مخزن آسماری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی نفت، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 دکترا، گروه مهندسی نفت، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

هدف از انجام این پژوهش، تعیین بهینه رخساره‌های پتروفیزیکی از روی داده‌های نموداری چاه است. با استفاده از روش دسته‌بندی خودکار K نزدیک­ترین همسایه می‌توان رخساره‌های پتروفیزیکی را تعیین کرد؛ اما نه به­صورت بهینه. برای تعیین بهینه رخساره‌ها، روش K نزدیک­ترین همسایه با روش‌های تحلیل سریع مؤلفه­های مستقل و تبدیل کسینوسی گسسته تلفیق می‌شود که این امر موجب افزایش نرخ موفقیت روش K نزدیک­ترین همسایه و تعیین بهینه رخساره‌های پتروفیزیکی می‌شود که به ­دنبال آن می‌توان مدل‌سازی و توصیف مخازن هیدروکربنی را انجام داد. پژوهش در دو مسیر متفاوت انجام می‌شود. در مسیر اول، روش تحلیل سریع مؤلفه­های مستقل روی داده اعمال‌ و سپس توسط روش K نزدیک­ترین همسایه دسته‌بندی می‌شود و در مسیر دوم روش‌های تحلیل سریع مؤلفه­های مستقل و تبدیل کسینوسی گسسته روی داده‌ها اعمال و سپس توسط روش K نزدیک­ترین همسایه دسته‌بندی می‌شود. در پایان نرخ موفقیت دسته‌بندی توسط K نزدیک­ترین همسایه در هر دو مسیر به­ منظور تعیین بهینه رخساره‌های پتروفیزیکی مورد ارزیابی قرار می‌گیرد. ارزیابی انجام‌ شده نشان می‌دهد که اعمال روش مسیر دوم روی داده‌ها به‌طور معنی‌داری نرخ موفقیت دسته‌بندی توسط روش K نزدیک­ترین همسایه را افزایش می‌دهد که این امر موجب تعیین بهینه رخساره‌های پتروفیکی می‌شود که همان هدف از انجام این پژوهش است. داده‌های مورد استفاده، نمودارهای صوتی (Sonic Log)، پرتوی گاما (Gamma Ray)، چگالی (FDC یا RHOB)، تخلخل نوترون (CNL یا NPHI) و نگارهای القایی ژرف (ILD) از میدان نفتی مارون در جنوب کشور ایران هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization determine of petrophysical facies class using Fast independent component analysis and discrete cosine transform based k-nearest neighbors in the Marun oil field, Asmari reservoir

نویسندگان [English]

  • S. A. Hasheminejad 1
  • K. Ahmadi 2
1 M.Sc., Department of Petroleum Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Ph.D., Department of Petroleum Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

This paper aims to optimally determine petrophysical facies according to well log data. Using the automatic classification method of K-NN (K-Nearest Neighbours), petrophysical facies can be determined even though not optimally. For optimal determination of facies, the K-NN method is combined with FastICA (Fast Independent Component Analysis) and DCT (Discrete Cosine Transform) methods. This increases the success rate of the K-NN method. It also brings about optimal determination of petrophysical facies after which modelling and description of hydrocarbon reservoirs can be done. The research is performed in two different ways: In the first approach, the FastICA method is applied to data and then classified by the K-NN method. In the second approach, FastICA and DCT methods are applied to data and then classified by the K-NN method. Finally, the success rate of classification by the K-NN method is evaluated in both approaches to optimally determine petrophysical facies. Such evaluations indicate that application of the second method to data significantly enhances the success rate of the classification by the K-NN method, thereby leading to optimal determination of petrophysical facies, which is the very aim of this study. The utilized data including sonic log (DT), gamma rays (SGR), density (FDC or RHOB), neutron porosity (CNL or NPHI), and deep induction logs (ILD), belongs to the Marun oil field in southern Iran.

کلیدواژه‌ها [English]

  • Discrete Cosine Transform
  • Fast Independent Component Analysis
  • Determination of petrophysical facies
  • K-Nearest Neighbour
  • Smoothing

References

Abdi, H. and Willians, L. J., 2010- Principal Component Analysis. WIREs Comp Stat 2, 433–459.

Amaziane, B., Bourgeat, A., Jurak, M., 2006- Effective macrodifusion in solute transport through heterogeneous porous media. Multiscale Modeling and Simulation 5, 184–204.

Avseth, P., Mukerji, T. and Mavko, G., 2005- Quantitative Seismic Interpretation. Applying Rock Physics to Reduce Interpretation Risk. Cambridge University Press, Cambridge, New York, Melbourne.

Battiato, S., Mancuso, M., Bosco, A. and Guarnera, M., 2001- Psychovisual and statistical optimization of quantization tables for DCT compression engines. In: Proceed- ings of the 11th International Conference on Image Analysis and Processing, ICIAP'01, Palermo, Italy, p. 602.

Bhatia, N. and Vandana, A., 2010- Survey of nearest neighbor techniques. International Journal of Computer Science and Information Security 2 (8), 302–305.

Blinn, J. F., 1993- What's the deal with the DCT. IEEE Computer Graphics and Applications 13 (4), 78–83.

Burden, R. L., Faires, J. D., 1985- Numerical Analysis, Third Edition Prindle, Weber and Schimidt, Boston.

Carrasquilla, A. and Leite, M. V., 2009- Fuzzy logic in the simulation of sonic log using as input combinations of gamma ray, resistivity, porosity and density well logs from Namorado Oilfield. In: Proceedings of the 11th International Congress of the Brazilian Geophysical Society, Salvador, Brazil.

Coconi-Morales, E., Ronquillo-Jarillo, G. and Campos-Enríquez, J. O., 2010- Multi-scale analysis of well-logging data in petrophysical and stratigraphic correlation. Geofísica Internacional 49 (2), 55–67.

Comon, P., 1994- Independent component analysis: a new concept?. Signal Proces- sing, 36; 287–314.

Cover, T. M. and Hart, P. E., 1967- Nearest neighbor pattern classification. IEEE Transac- tions on Information Theory 13 (1), 21–27.

Doyen, P. M., 2007- Seismic reservoir characterization: an earth modelling perspec- tive. EAGE Publications, Houten, The Netherlands.

Dubrule, O., 1994- Estimating or choosing a geostatistical model. In: Dimitrako- poulos, R. (Ed.), Geostatistics for the Next Century. Kluwer Academic Publishers, Dordcrecht, The Netherlands, pp. 3–14.

Duda, R. and Hart, P., 1973- Pattern Classification and Scene Analysis. Wiley, New-York.

Farina, A. and Studer, F. A., 1984- Application of Gram-Schmidt algorithm optimum radar signal processing. IEEE Proceedings Part F 131, 139–145.

Franklin, J. N., 1968- Matrix Theory. Englewood Cliffs: Prentice-Hall. 292 pp.

Grana, D., Pirrone, M. and Mukerji, T., 2012- Quantitative log interpretation and uncertainty propagation of petrophysical properties and facies classification from rock-physics modeling and formation evaluation analysis. Geophysics 77, WA45–WA63.

Hyvärinen, A., 1999- Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10 (3), 626–634.

Hyvärinen, A., Karhunen, J. and Oja, E., 2001- Independent Component Analysis. John Wiley and Sons, Toronto 481 pp.

Liu, Y., Weisberg, R. H., Mooers, C. N. K., 2006- Performance evaluation of the self- organizing map for feature extraction. Journal of Geophysical Research 111, C05018, http://dx.doi.org/10.1029/2005JC003117.

MacQueen, J. B., 1967- Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (Eds.), Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 281–297.

Martucci, S. A., 1994- Symmetric convolution and the discrete sine and cosine transforms. IEEE Transactions on Signal Processing SP-42, 1038–1051.

Messina, A. and Langer, H., 2011- Pattern recognition of volcanic tremor data on Mt. Etna (Italy) with KKAnalysis—a software program for unsupervised classifica- tion. Computers and Geosciences 37, 953–961.

Mitchell, T., 1997- Machine Learning. McGraw-Hill Higher Education, New York 432 pp.

Oppenheim, A. V., Schafer, R. W. and Buck, J. R., 2009- Discrete-Time Signal Processing, 3th ed. Prentice Hall, NJ 1120 pp.

Rao, K. R. and Yip, P., 1990- Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, Boston 512 pp.

Rosati, I. and Cardarelli, E., 1997- Statistical pattern recognition technique to enhance anomalies in magnetic surveys. Journal of Applied Geophysics 37 (2), 55–66.

Russell, S. and Norvig, P., 2002- Artificial Intelligence: A Modern Approach. Prentice Hall, Essex, England 478 pp.

Rutherford, S. R. and Willians, R. H., 1989- Amplitude versus offset variations in gas sands. Geophysics 54 (06), 680–688.

Sanchetta, A. C., Leite, E. P. and Honório, B. C. Z., 2013- Facies recognition using a smoothing process through Fast Independent Component Analysis and Discrete Cosine Transform. Computers and Geosciences 57, 175-182.

Schuerman, J., 1996- Pattern Classification: A Unified View of Statistical and Neural Approaches. Wiley and Sons, New York 392 pp.

Simonoff, J. S., 1996- Smoothing Methods in Statistics. Springer, New York 368 pp.

Toussaint, G. T., 2005- Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining. International Journal of Computational Geometry and Applications 15 (2), 101–150.

Turlapaty, A. C., Anantharaj, V. G. and Younan, N. H., 2010- A pattern recognition based approach to consistency analysis of Geophysical datasets. Computers and Geosciences 36, 464–476.