بررسی ایزوتوپ های پایدار O-H-B انواع تورمالین در بیوتیت مسکویت گرانیت مشهد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 علوم زمین.دانشگاه علوم.دانشگاه لرستان

2 دانشکده علوم پایه، گروه زمین شناسی، دانشگاه لرستان، خرم آباد، ایران

3 هیئت علمی دانشگاه لرستان

4 دانشگاه زمین شناسی چین، دانشکده تحقیقات علوم زمین

5 استرالیا، دانشگاه تاسمانیا، گروه علوم زمین

6 افریقای جنوبی، دانشگاه کیپ تاون، گروه علوم زمین

چکیده

بیوتیت مسکویت گرانیت مشهد شامل تورمالین های با اشکال نودولی، پگماتیتی، آپلیتی، رگه‌ای، شعاعی و رگه‌های کوارتز - تورمالین می‌باشند. مقدار δ18O و δD در تورمالین های شعاعی(4/12 و 69-)، نودولی(8/11 و 63-)، کوارتز- تورمالین(7/11 و 57-)، پگماتیتی(62/11 تا 67/11 و 59- تا 73-)، آپلیتی(39/11 و 57-)، رگه‌ای(82/11 و 62-) و میکاشیست(06/11 و 77-) با تغییرات کم و مشابه یکدیگر هستند. این مقادیر نشان از یک منشأ ماگمایی برای سیال سازنده تورمالین در بیوتیت مسکویت گرانیت مشهد دارد. تفاوت مقدار δ18O بین کوارتز و تورمالین بین 2 تا 2/2 درصد است که این نشان می‌دهد این دو کانی در تعادل با یکدیگر می‌باشند. دماسنجی با استفاده از مقدار δ18O در زوج کانی کوارتز- تورمالین، دمای تبلور تورمالین ها بین 492 تا 579 درجه سانتی‌گراد تخمین زده ‌شده است. براساس تغییرات مقادیر δ18O و δDسیال در حال تعادل با تورمالین ها در محدوده آب های ماگمایی و ماگمای پرآلومینیم قرار می‌گیرد. تمام تورمالین های مشهد حاوی مقادیر 11B مشابه و تغییرات کم بین 4/7- تا 8/10- ‰ می‌باشد که نشان‌دهنده یک منبع بور مشترک حاصل از تفریق ماگمای بسیار تکامل‌یافته برای همه آن‌ها است. بر اساس مقادیر 11B، تورمالین های مشهد در محدوده تورمالین های مربوط به گرانیت‌های نوع S که توسط پوسته قاره‌ای شکل‌گرفته‌اند قرار می‌گیرند. مقدار11B تورمالین های مشهد، مقادیر 11B ماگمای بیوتیت مسکویت گرانیت مشهد را نشان می‌دهد

کلیدواژه‌ها


عنوان مقاله [English]

The investigation of O-H-B isotopes of tourmaline in biotite- muscovite granite of Mashhad

نویسندگان [English]

  • FARHAD ZALL 1
  • Zahra Tahmasbi 2
  • ahmad ahmadi khalaji 3
  • Shao Yang Jing 4
  • Leonid Danyushevsky3 5
  • chris harris 6
1 GEOLOGY-FUCULTE-LORESTAN
2 Department of Geology, Faculty of Sciences, Lorestan University, Khoramabad, Iran
3 Department of Geology, Faculty of Science, Lorestan University
4 Faculty of Earth Resources, China University of Geosciences
5 Department of Earth Sciences , University of Tasmania, Australia
6 Department of Geological Sciences, University of Cape Town, South Africa
چکیده [English]

Several distinct morphologies of tourmaline have been identified in Mashhad biotite-muscovite granite: nodule, pegmatite, aplite, quartz-tourmaline veins, tourmaline-rich veins and radial tourmalines. The δ18O and δD values in solar tourmaline (12.4 and -69 ‰), nodule tourmaline (11.8 and -63), quartz-tourmaline vein (11.7 and -57), pegmatite tourmaline (11.62-11.67 and -59 to -73), aplite tourmaline (11.39 and -57), tourmaline-rich vein (11.82 and -62) and mica schist tourmaline (11.06 and -77) with low changes are similar together. These values show same origin for tourmalines fluid source in biotite-muscovite granite. The difference in δ18O values between quartz and tourmaline (Δqtz-tur) are positive (between+2.0 and+2.2‰), and this show quartz and tourmaline are in equilibrium. The δ18O thermometry of tourmaline - quartz minerals show a range between 492°C and 579 °C for tourmaline crystallization. The calculated δ18O, and δD values of the initial fluid in equilibrium with tourmaline suggest a magmatic and primitive magmatic water of peraluminous granite source. All tourmalines show similar δ11B values (with a narrow range between −7.4 and −10.8‰). This indicates a same boron source for them that resulting during highly evolved magmatic differentiation. Based on the 11B values of tourmalines in Mashhad fall within the range reported for granite-related tourmaline and similar to the S-type source granites that derived by Continental crust. The δ11B values of tourmalines show the δ11B values of the magma of the biotite-muscovite granite.

کلیدواژه‌ها [English]

  • Boron Isotope
  • Oxygen Isotope
  • Hydrogen Isotope
  • Tourmaline
  • Mashhad Granite

کتابنگاری

طهماسبی، ز.، زال، ف. و احمدی خلجی، ا.، 1394- ژئوشیمی و سازوکار تشکیل تورمالین گرهکی در گرانیت‌های (g2) مشهد. مجله بلورشناسی و کانی‌شناسی ایران، دوره 23، شماره 3، صص. 569 تا 584.

طهماسبی، ز.، زال، ف. و احمدی خلجی، ا.،1396- ژئوشیمی و نحوه تشکیل تورمالین‌های پگماتیتی و رگه‌ای در لوکوگرانیت‌های مشهد. فصلنامه زمین‌شناسی ایران، شماره 41، سال11، صص. 42 تا 65.

کریم‌پور، م. ح.،  فارمر، ل. و  استرن، چ.، 1390- ژئوشیمیرادیوایزوتوپ‌ها Rb–Sr و Sm–Nd، سن‌سنجیزیرکن U-Pb وتعیینمنشأ لیکوگرانیت‌هایخواجهمراد،مشهد،ایران. فصلنامه علوم زمین، سازمان زمین‌شناسی و اکتشاف معدنی کشور، سالبیستم،شماره80،صص. 171 تا 182.

میرنژاد، ح.، 1370- پترولوژی گرانیت‌ها و پگماتیت‌های جنوب مشهد، پایان‌نامه کارشناسی ارشد، پردیس علوم، دانشگاه تهران، 259 ص.

ولی‌زاده، م. و. و کریم‌پور، م.ح.، 1374- منشأ و موقعیت تکتونیکی گرانیت‌های جنوب مشهد. مجله علوم، دانشگاه تهران، جلد 21، شماره 1،صص. 71 تا 82.

ولیزاده، م. و. و میرنژاد، ح.، 1371- بررسی ژئوشیمیایی پتاسیم و برخی از عناصر کمیاب در فلدسپات های پتاسیک و مسکوویت های پگماتیت های جنوب مشهد. فصلنامه علوم زمین، سازمان زمین‌شناسی و اکتشاف معدنی کشور، دوره 1،  شماره 3 ، صص. 27 تا 35 .

 

References

Alberti, A. and Moazez, Z., 1974- Plutoinc and metamorphic rocks of the mashhad area (northeastern Iran, Khorasan). Bulletin Society Geological Italy, V. 93, p. 1157- 1196.

Ansdell, K. M. and Kyser, T. K., 1992- Mesothermal gold mineralization in a Proterozoic greenstone belt: western Flin Flon domain, Saskatchewan, Canada. Economic Geology, V. 87, p. 1496- 1524.

Beaty, D. W., Hahn, G. A. and Threlkeld, W. E., 1988- Field, isotopic, and chemical studies of tourmaline-bearing rocks in the Belt-Purcell Supergroup: Genetic constraints and exploration significance for Sullivan type ore deposits. Canadian Journal of Earth Sciences, V. 25, p. 392- 402.

Beurlen, H., Trumbull, R. B., Wiedenbeck, M. and Soares, D., 2011- Boron-isotope variations in tourmaline from granitic pegmatites of the Borborema Pegmatite Province, ne-brazil. asociación geológica argentina, serie d, publicación especial, V. 14, p. 37- 39.

Blamart, D.,  Boutaleb, M.,  Sheppard, S.,  Marigna, C. and Weisbrod, A.,  1992- A comparative thermobarometric (chemical and isotopic) study of a tourmalinized pelite and its Sr-Be vein, Walmes, Morocco. European Journal of Mineralogy, V. 4, p. 355- 368.

Dutrow, B. L. and Henry, D. J., 2011- Tourmaline: A geologic DVD. Elements, V. 7, p. 301- 306.

Dyar, M. D., Guido/Ii, C. V., Core, D., Weam, K., Wise, M., Francis, C. A., Johnson, K. and Brady, J. 8., 1997- Chemistry of tourmaline across pegmatite-country rock boundaries at Black Mountain and Mount Mica, Southwestern Maine. U.S.A. International Symposium on Tourmaline, Czech Rep., Abstr, p. 14- 15.

Esmaeily, D., Trumbull, R., Haghnazar, M., Krienitz, M. and Wiedenbeck, M., 2009- Chemical and boron isotopic composition of hydrothermal tourmaline from scheelite-quartz veins at Nezamabad, western Iran. European Journal of Mineralogy,V. 21, p. 347- 360.

Fedorowich, J., Stauffer, M. and Kerrich, R., 1991- Structural setting and fluid characteristics of the Proterozoic Tartan Lake gold deposit, Trans-Hudson orogen, northern Manitoba. Economic Geology, V. 86, p. 1434- 1467.

Fouillac, A. M., Dommanget, A. and Milesi, J. P., 1993- A carbon, oxygen, hydrogen and sulfur isotopic study of the gold mineralization at Loulo, Mali. Chemical Geology, V. 106, p. 47- 62.

France-Lanord, C., Sheppard, S. M. F. and Le Fort, P., 1988- Hydrogen and oxygen isotope variations in the High Himalaya peraluminous Manaslu leucogranite: Evidence for heterogeneous sedimentary source. Geochimica et Cosmochimica Acta, V. 52, p. 513- 526.

Gou, G. N., Qiang Wang, O., Wyman, D. A., Xia, X. P., Wei, G. J. and Guo, H. F., 2017- In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling. Solid Earth Sciences, V. 2, p. 43- 54.

Harris, C. and Vogeli, J., 2010- Oxygen composition of garnet in the peninsula granite, Cape Granite Suite, South Africa: constraints of melting and emplacement mechanisms. South African Journal of Geology, V. 113, p. 401- 412.

Huang, S., Song, Y., Houb, Z. and Xue, C., 2016- Chemical and stable isotopic (B, H, and O) compositions of tourmaline in the Maocaoping vein-type Cu deposit, western Yunnan, China: Constraints on fluid source and evolution. Chemical Geology, V. 439, p. 173- 188.

Ibrahim, M. S. and Kyser, T. K., 1991- Fluid inclusion and isotope syste­matics of the high-temperature Proterozoic Star Lake lode gold de­posit, northern Saskatchewan, Canada Economic Geology, V. 86, p. 1468- 1490.

Jiang, S. Y. and Palmer, M. R., 1998- Boron isotope systematics of tourmaline from granites and pegmatites: a synthesis. European Journal of Mineralogy., v 10, p 1253- 1265.

Jiang, S. Y., 1998- Stable and radiogenic isotope studies of tourmaline: An overview. Journal of the Czech Geological Society, 43 (1).

Kasemann, S., Erzinger, J. and Franz, G., 2000- Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contributions to Mineralogy and Petrology, V. 140, p. 328- 343.

King, R. W., 1990- Tourmaline from mesothermal gold deposits of the Superior Province, Canada: Textural, chemical, and isotopic relati­onships. Ph.D thesis, University Saskatchewan, Saskatoon, 45p.

Kontak, D. J. and Kyser, T. K., 2009- Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia. II. Implications of stable isotopes (δ18O, δD) formagma source, internal crystallization and nature of sodium metasomatism. The Canadian Mineralogist, V. 47, P. 745- 764.

Kotzer, T. G., Kyser, T. K., King, R. W. and Kerrich, R., 1993- An empi­rical oxygen- and hydrogen isotope geothermorneter for quartz-tour­maline and tourmaline-water. Geochimica et Cosmochimica Acta, V. 57, p. 3421- 3426.

Leeman, W. P. and Sisson, V. B., 1996- Geochemistry of boron and its implications for crustal and mantle processes. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy, V. 33, p. 645- 708

Marschall, H. R. and Jiang, S. Y., 2011- Tourmaline isotopes: no element left behind. Elements, V. 7,  p. 313- 319.

Marschall, H. R., Ludwig, T., Altherr, R., Kalt, A. and Tonarini, S., 2006- Syros metasomatic tourmaline: Evidence for very high-11B fl uids in subduction zones. Journal of Petrology, V. 47, p. 1915- 1942

Nesbitt, B. E., Longstaffe, F. J., Shaw, D. R. and Muehlenbachs, K., 1984- Oxygen isotope geochemistry of the Sullivan massive sulfide depo­sit, Kimberley, British Columbia. Chemical Geology, V. 79, p. 933- 946.

Palmer, M. R., London, D., Morgot, G. B. and Babb, H. A., 1992- Experimental determination of fractionation of II B/10B between tourmaline and aqueous vapor: A temperature- and pressure-depen­dent isotopic system. Chemical Geology, V. 101,  p. 123- 130.

Slack, J. F., 1996- Tourmaline associations with hydrothermal ore deposits. /11: E. S. Grew - L. M. Anovitz (eds.): Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy and Geochemistry, V. 33, p. 559- 643.

Taheri, J. and Ghaemi, F., 1994- Geological sheet map of Mashhad, 1:100000 scale. Geological Survey of Iran, Tehran.

Taylor, B. E, 1998- Mineralizing fluids in the Kidd Creek massive sulfide depo­sit, Ontario: Evidence from oxygen, hydrogen, and boron isotopes in tourmaline. In: M. D. Ha1111i11gto11 - C. T. Barrie - W. Bleeker (eds.):The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovence, Canada. Economic Geology Monograph, V. 10, p. 123- 136.

Taylor, B. E. and Friedrichsen, H., 1983- Light stable isotope systematics of granitic pegmatites from North America and Norway. Isotope Geosciences, V. 1, p. 127- 167.

Taylor, B. E., Foord, E. E. and Friedrichsen, H., 1979- Stable isotope and fluid inclusion studies of gem-bearing granitic pegmatite-aplite di­kes, San Diego Co., California. Contributions to Mineralogy and Petrology, V. 68, p. 187- 205.

Taylor, B. E., Leitch, C. H., Lydon, J. W. and Watanabe, D. H., 1995- Stable isotope geochemistry of the Sullivan Pb-Zn deposit, Kimberley, British Columbia. Abstracts of papers / Geological Association of Canada, Mineralogical Association of Canada, V. 20, p. 103.

Taylor, B. E., Palmer, M. R. and Slack, J. F., 1991- Kidd Creek tourmali­ne: An oxygen, hydrogen, and boron isotopic tracer of hydrothermal fluids. Abstracts of papers / Geological Association of Canada, Mineralogical Association of Canada, V. 16, p. l22.

Taylor, R., Ikingura, J., Fallick, A., Huang, Y. and Watkinson, D., 1992- Stable isotope compositionsof tourmalines from granites and related hydrothermal rocks of the Karagwe- Ankolean belt, northwest Tanzania. Chemical Geology, V.  94, p. 215- 227.

Tonarini, S., Pennisi, M., Adorni-Braccesi, A., Dini, A., Ferrara, G., Gonfiantini, R., Wiedenbeck, M. and Gr€oning, M., 2003- Intercomparison of boron isotope and concentration measurements. Part I: selection, preparation and homogeneity tests of the intercomparison materials. Geostandards and Geoanalytical Research, V. 27, p. 21-39.

Yang, S. Y. and Jiang, S. Y., 2012- Evidence for boron mobilization and infiltration during magmatic–hydrothermal processes. Chemical Geology, V. 312-313, p. 1- 208.

Yang, S. Y., Jiang, S. Y., Zhao, K. D., Dai, B. Z. and Yang, T., 2015- Tourmaline as a recorder of magmatic–hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China. Contribution. Mineralogy and Petrology, V. 170, p. 42.

Yavuz, F., Jiang, S. Y., Karakay, N., Karakaya, M. Ç. and Yavuz, R., 2011- Trace element, rare-earth element and boron isotopic compositions of tourmaline from a vein-type Pb–Zn–Cu ± U deposit, NE Turkey. International Geology Review, V. 53, p. 1- 24.

Zheng, Y., 1993- Calculation of oxygen isotope fractionation in hydro­xyl-bearing silicates. Earth and Planetary Science Letters, V. 120, p. 247- 263.