ژئوشیمی و پتروژنز توده نفوذی گرانیتوییدی کودکان (شرق بلوک لوت)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی تهران، تهران، ایران

3 گروه زمین شناسی، دانشکده ژئوفیزیک، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان، ایران

10.22071/gsj.2018.84181.1100

چکیده

گرانیتویید کودکان در فاصله 100 کیلومتری جنوب بیرجند، 18 کیلومتری شمال معدن قلعه‎زری و در شرق ایران واقع شده‎اند. این توده نفوذی متعلق به پهنه آتشفشانی- نفوذی بلوک لوت است. این سنگ­های نفوذی (ائوسن- الیگوسن) از نظر پتروگرافی شامل دیوریت، مونزودیوریت، کوارتزمونزودیوریت، تونالیت، تونالیت پورفیری، گرانودیوریت، گرانیت و گرانیت پورفیری هستند. سنگ­های نفوذی در این محدوده  دارای سرشت ماگمایی کالک­آلکالن با پتاسیم بالا تا شوشونیتی، متا­آلومین و گرانیتویید­های از نوع I هستند. غنی­شدگی LILE نسبت به HFSE (93/124-12/38RbN/YN: )، آنومالی منفی Nb و Ti و میزان نسبتأ بالای LREE نسبت به HREE (03/12-74/6LaN/YbN: ) در تمامی نمونه­ها، از شاخصه­های ماگماتیسم­های مرتبط با فرورانش و وجود آنومالی مثبت K و Pb از نشانه­های درگیر شدن ماگمای اولیه با سنگ­های پوسته­ای در این محدوده است. در نمودار­های عنکبوتی، موازی بودن روند نمونه­ها حاکی از خاستگاه مشابه آنهاست. نسبت­های عنصری و نمودارهای مختلف نشان از تشکیل این توده نفوذی در یک حاشیه فعال قاره­ای با ضخامت پوسته­ای کمتر از 45 کیلومتر در مرحله قبل از برخورد دارد.  ماگمای والد در نتیجه ذوب بخشی (کمتر از 5 درصد) از یک پریدوتیت غنی شده واقع در گوه گوشته‎ای (اسپینل لرزولیت) ایجاد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry and petrogenesis of Koudakan granitoid body (east of Lut block-Central Iran)

نویسندگان [English]

  • Siavash Omidianfar 1
  • mohammad rahgoshay 2
  • Iman Monsef 3
1 Department of geology, Faculty of earth science, University of shahid Beheshty, Tehran, Iran
2 Department of Geology, College of Earth Sciences, Shahid Beheshti University of Tehran, Tehran, Iran
3 Department of Geology, Institute of advanced studies in basic sciences of Zanjan, Zanjan, Iran
چکیده [English]

Koudakan Granitoid located in 100 km South of Birjand and 18 km North of Ghaleh-Zari mine in eastern Iran. It belong to the Lut Block volcanic–plutonic belt. These intrusive rocks (Eocene-Oligocene) petrogaphicaly composed of Diorite, Monzodiorite, Quartzmonzodiorite, Tonalite, Porphyritic Tonalite, Granodiorite, Granite and Porphyritic Granite. Plutonic rocks in this area have features typical of high-K calc-alkaline to shoshonite series, metaluminous and belong to I-type Granitoides. Enrichment in LILE rather than HFSE (RbN/YN: 38.12-124.93), negative anomalies of Nb and Ti and enrichment in LREE rather than HREE (LaN/YbN: 6.74-12.03) in all of samples are important evidences for the formation of this rocks in a subduction related magmatic belt. Positive anomalies of Pb and K indicate the involvement of continental crust in evolution of parental magma. Parallel trend of the samples in spider diagrams show that they are co-genetic. Elements ratios and Different discrimination diagrams show the formation of this rocks in an active continental margin with about less than 45 Km crustal thickness in per-collision steps. Parental magma has been generated by low degree partial melting (less than 5%) of an enriched peridotite in mantle wedge (Spinel lherzolite.).

کلیدواژه‌ها [English]

  • Geochemistry
  • Petrogenesis
  • Koudakan granitoid
  • Lut block
  • Eocene-Oligocene magmatism

کتابنگاری

درویش­زاده، ع.، 1394- زمین­شناسی ایران: چینه­شناسی، تکتونیک، دگرگونی و ماگماتیسم. انتشارات امیرکبیر، چاپ ششم، 256 ص.

References

Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. and Mitchell, J. G., 2000- Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Volcanology and Geothermal Research 102: 67- 95.

Almeida, M. E., Macambira, M. J. B. and Oliveira, E. C., 2007- Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97-1.96 Ga) in Central portion of Guyana Shield. Precambrian Research 155(2): 69- 97.

Arjmandzadeh, R., Karimpour, M. H., Mazaheri, S. A., Santos, J. F., Medina, J. M., Homam, S. M., 2011b- Sr–Nd isotope geochemistry and petrogenesis of the Chah- Shaljami granitoids (Lut Block, Eastern Iran). Asian Earth Sci 41: 283–296.

Arjmandzadeh, R., Karimpour, M. H., Mazaheri, S. A., Santos, J. F., Medina, J. M., Homam, S. M., 2011a- Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut block, eastern Iran. Economic Geology 1(3): 1-14.

Arjmandzadeh, R. and Santos, S. A., 2014- Sr–Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu–Mo porphyry mineralizing intrusives from Lut Block, eastern Iran. Int. J. Earth Sci. (GeolRundsch) 103: 123–140.

Askren, D. R., Roden, M. F. and Whitney, J. A., 1999- Petrogenesis of Tertiary andesite lava flows interlayered with large-volume felsic ash-flow tuffs of the Western USA. Petrology 38: 1021- 1046.

Bagheri, B. and Stampfli, G. M., 2008- The Anarak, Jandaq and Posht-e- Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451: 123- 155.

Batchelor, R. A. and Bowden, P., 1985- Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology 48: 43- 55.

Berberian, M. and King, G. C., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18: 210- 265.

Boynton, W. V., 1984 - Cosmochemistry of the rare earth elements: meteorite studies, in rare earth element geochemistry. Elsevier, Amsterdam.

Chappell, B. W. and White, A. J. R., 1992- I- and S- type granites in the Lachlan Fold belt, Transactions of the Royal Society of Edinburg. Earth Science 83: 1- 26.

Clemens, J. D., Stevens, G. and Farina, F., 2011- The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126 3- 4: 174- 181.

De la Roche, H., Leterrier, J., Grand Claude, P. and Marchal, M., 1980- A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses its relationships with current nomenclature. Chemical Geology 29: 183- 210.

Doglioni, C., Tonarini, S. and Innocenti, F., 2009- Mantle wedge asymmetries and geochemical signatures along W- and E–NE directed subduction zones. Lithos 113: 179- 189.

Eastoe, C. G. and Eadington, P. J., 1986- High-temperature fluid inclusions and the role of the biotite granodiorite in mineralization at the Punguna porphyry copper deposit, Bougainville, Papua New Guinea. Economic Geology 81: 478- 483.

Eftekhar-Nezad, J., Behrouzi, A. and Nazer, N. Kh., 1992- Geological quadrangle map of Basiran, scale 1:100000, sheet 7853, Geological Survey of Iran, Tehran.

Eftekharnezhad, J., 1981- Tectonic division of Iran with respect to sedimentary basins. Iranian Petroleum Society 82: 19-28.

Gust, D. A., Arculus, R. A. and Kersting, A. B., 1997- Aspects of magma sources and processes in the Honshu arc. The Canadian Mineralogist 35: 347- 365.

Harker, A., 1909- The natural history of igneous rocks. Methuen, London.

Hastie, A. R., Kerr, A. C., Pearce, J. A. and Mitchell, S. F., 2007- Classification of altered volcanic arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Petrology 48(12): 2341- 2357.

Hezarkhani, A., 2005- Petrology of the intrusive rocks within the Sungun Porphyry Copper Deposit, Azerbaijan, Iran. Asian Earth Sciences: 1- 15.

Hofmann, A. M., 1997- Mantle geochemistry: the message from oceanic volcanism. Nature 385: 219- 229.

Jung, D., Keller, J., Khorasani, R., Marcks, Ch., Baumann, A. and Horn, P., 1983- Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran, Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, No. 51, 285- 336.

Kay, S. M. and Mpodozis, C., 2001- Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust. GSA TODAY (Geol Soc Am) 11: 4- 9.

Kay, S. M. and Mpodozis, C., 2002- magmatism as a probe to Neogene shllowing of the Nazca plate beneath the modern Chilean flat-slab. American Earth Sciences 15: 39- 57.

Kurt, H., Asan, K. and Ruffet, G., 2008- The relationship between collision-related calcalkaline and within-plate alkaline volcanism in the Karacadağ area (Konya-Turkey, Central Anatolia). Chemie der Erde 68(2): 155- 176.

Leat, P. T., Pearce, J. A., Barker, P. F., Millar, I. L., Barry, T. L. and Larter, R. D., 2004- Magma genesis and mantle flow at a subduction slab edge: The South Sandwich arc-basin system. Earth and Planetary Science Letters 227: 17- 35.

Leat, P. T., Smellie, J. L., Millar, I. L. and Larter, R. D., 2003- Magmatism in the South Sandwich arc. In: Larter, R. D., Leat, P. T. (Eds.), Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes. Geological Society, London, 285- 313.

Lin, P. N., Stern R. J. and Bloomer, S. H., 1989- Shoshonitic volcanism in theb northern Mariana arc: 2. Large ion lithophile and rare earth element abundances: evidence for the source of incompatible element enrichments in intraoceanic arcs. Geophys Res 94: 497- 514.

Malekzadeh Shafaroudi, A., 2009- Geology, Mineralization, Alteration, Geochemistry, Microthermometry, Radiogenic Isotopes, Petrogenesis of Intrusive Rocks and Determination of Source of Mineralization in Maherabad and Khopik Prospect Area, South Khorasan Province. Unpublished Ph. D Thesis. Ferdowsi University of Mashhad, Iran, pp. 536.

Martin, H., 1986- Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14: 753- 756.

Martin, H., 1987- Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Petrology 28: 921- 953.

Martin, H., 1994- The Archaean grey gneisses and the genesis of the continental crust: in Archean crustal evolution. Elsevier, Amsterdam.

McKenzi, D. and O’Nions, R. K., 1991- Partial melt distribution from inversion of rare earth element concentrators. Journal of Petrology 32: 1021- 1091.

Pearce, A. J. and Parkinson, I. J., 1993- Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society 76: 373- 403.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Petrology 25: 956- 983.

Peccerillo, A. and Taylor, S. R., 1976- Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area (northern Turkey). Contributions to Mineralogy and Petrology 58: 63- 81.

Rapp, R. P. and Watson, E. B., 1995- Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust–mantle recycling. Journal of Petrology, 36: 891- 931.

Rollinson, H. R., 1993- Using geochemical data: evaluation, presentation, interpretation. Longman Science and Technical, London.

Saccani, E., Delavari, M., Beccaluva, L. and Amini, S. A., 2010- Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): implication for the evolution of the Sistan ocean. Lithos 117: 209- 228.

Samani, B. and Ashtari, Sh., 1992- Geological evolution of Sistan and Baluchestan area. Journal of earth sciences, No. 4. Geological survey of Iran.

Schandl, E. S. and Gorton, M. P., 2002- Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology 97: 629- 642.

Sengor, A. M. C. and Natalin, B. A., 1996- Paleotectonics of Asia: fragment of a synthesis. In: An, Y., Harrison, T.M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 486- 640.

Shand, S. J., 1943 - Eruptive rocks. Their genesis, composition, classification and their relation to depsits. Thomas Murby and Co., London, U. K.

Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, magmatism in ocean basins. Geological Society of London 42: 313- 345.

Walker, J. A., Patino, L. C., Carr, M. J. and Feigenson, M. D., 2001- Slab control over HFSE depletions in Central Nicaragua. Earth and Planetary Science Letters 192: 533- 543.

 Wang, Q., Wyman, D. A., Xu, J., Jian, P., Zhao, Z., Li, C., Xu, W., Ma, J. and He, B., 2007- Early Cretaceous adakitic granites in the northern Dabie complex, Central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71: 2609- 2636.