پتروژنز و تعیین سن U-Pb(SHRIMP) توده نفوذی چلتیان، غرب جیرفت

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، گروه زمین‌شناسی، دانشگاه پیام نور، ایران

چکیده

ترکیب عمومی توده گرانیتوئیدی چلتیان که در منتهی‌الیه جنوب‌شرقی زون سنندج-سیرجان قرار گرفته است، ترونجمیتی Al پایین با ماهیت تولئیتی تا ترانزیشنال می‌باشد. این توده درون نهشته‌های رسوبی-آتشفشانی اوایل مزوزوئیک نفوذ نموده است. برپایه سن‌سنجی بلورهای زیرکن که به روش(SHRIMP) Pb-U انجام شد، سن توده مورد مطالعه187.5±3.2 میلیون سال برآورد شده است. توده مورد مطالعه دارای Al2O3 کمتر از 15wt.%، نسبت Sr/Y پایین، REE کمتر تفریق‌یافته و نسبت (La/Yb)N پایین می‌باشد. در نمودارهای عنکبوتی عادی‌شده نسبت به گوشته اولیه نمونه‌های مورد مطالعه غنی‌شدگی از عناصر LILEs مانند K، Rb، Ba و Th نسبت به HFSEs مانند Nb، Ta و Ti نشان می‌دهند که ویژگی شاخص سنگ‌های وابسته به کمان می‌باشد. براساس ویژگی‌های زمین‌شناسی و ژئوشیمیایی ماگمای منشأ توده مورد ‌مطالعه از ذوب بخشی دهیدراسیون سنگ مادر مافیک با ترکیب آمفیبولیتی در فشار کم حاصل شده و در یک حوضه کششی وابسته به فرورانش در اوایل ژوراسیک میانی جایگزین شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrogenesis and U-Pb SHRIMP age dating of Chaltian pluton, West Jiroft

نویسنده [English]

  • zahra badrzadeh
Assistant Professor, Department of Geology, Payame Noor University, Iran
چکیده [English]

Abstract
The studied Chaltian granitoid is located in the endpoint of the southern Sanandaj–Sirjan Zone. This pluton has
Low-Al trondhjemitic composition with tholeiitic to transitional nature. The intrusion has been intruded in the early Mesozoic volcanic and sedimentary rocks.
According to U-Pb SHRIMP age dating of zircon grains, this pluton was intruded at the 187.5 ±3.2Ma ago. Studied pluton has low Al2O3, Sr/Y, (La/Yb)N ratio and less fractionated REE pattern. In the primitive mantle normalized spider diagrams, studied samples show enrichment of LIL elements such as K, Rb, Ba and Th relative to HFS elements and has negative anomaly in Ta, Nb and Ti elements, which are considered characteristic of magmas generated in subduction related settings. In terms of their origin, based on geological and geochemical characteristics, trondhjemitic melt has been generated by low pressure dehydration melting of amphibolitic source in an continental extensional tectonic setting related to subduction environment.

کلیدواژه‌ها [English]

  • Trondhjemite
  • U-Pb
  • Petrogenesis
  • Chaltian
  • Sanadaj-Sirjan Zone

کتابنگاری

باباخانی، ع.، 1371- نقشه زمین‌شناسی سبزواران با مقیاس 1:250000، نقشه زمین‌شناسی تصحیح شده کارشناسان یوگسلاوی، سازمان زمین‌شناسی و اکتشافات معدنی کشور.

شهرکی قدیمی، ع.، 1383- نقشه زمین‌شناسی 1:100000 اسفندقه، سازمان زمین‌شناسی و اکتشافات معدنی کشور. 

 

References

Ahadnejad, V., Valizadeh, M. V., Deevsalar, R. and Rezaei-Kahkhaei, M., 2011- Age and geotectonic position of the Malayer granitoids: Im-plication for plutonism in the Sanandaj-Sirjan zone, W Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 261(1): 61- 75.

Ahmadi Khalaji, A., Esmaeily, D., Valizadeh, M. V. and Rahimpour-Bonab, H., 2007- Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran: Journal of Asian Earth Sciences, v. 29, p. 859- 877.

Ahmadipour, H. and Rostamizadeh, G. 2012- Geochemical Aspects of Na-Metasomatism in Sargaz Granitic Intrusion (South of Kerman Province, Iran). Journal of Sciences, Islamic Republic of Iran 23(1): 45- 58.

Alirezaei, S. and Hassanzadeh, J., 2012- Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: a new record of the Gondwana break-up in Iran: Lithos, v. 151, p. 122- 134.

Arth, J. G. and Hanson, G. N., 1975-Geochemistry and origin of the Early Precambrian crust of northeastern Minnesota. Geochim. Cosmochim. Acta, 39:325- 362.

Arvin, M, Pan, Y, Dargahi, S, Malekizadeh, A. and Babaei, A., 2007- Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. J Asian Earth Sci 30:474- 489.

Azizi, H., Asahara, Y., Mehrabi, B. and Chung, S. L., 2011a- Geochronological and geochemical constraints on the petrogenesis of high-K granite fromthe Suffi abad area, Sanandaj–Sirjan zone, NW Iran. Chemie der Erde 71, 363- 376.

Azizi, H., Tanaka, T., Asahara, Y., Chung, S. L. and Zarrinkoub, M. H., 2011b- Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U–Pb age and Sr–Nd isotopes: Journal of Geodynamics, v. 52, p. 304- 320.

Bagheri, S. and Stampfli, G. M., 2008- The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications: Tectonophysics, v. 451, p. 123- 155.

Barker, F., 1979- Trondhjemite; definition, environment, and hypotheses of ori­gin. In F. Barker, Ed., Trondhjemites, Dacites, and Related Rocks, p. 1- 12. Elsevier, Amsterdam.

Barrett, T. J. and MacLean, W. H., 1994- Mass changes in hydrothermal alteration zones associated with VHMS deposits in the Noranda area. Exploration Mining Geol. 3, 131- 160.

Bea, F., Mazhari, A., Montero, P., Amini, S. and Ghalamghash, J., 2011- Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: evidence for Variscan magmatism in a supposedly Cimmerian superterrane. Journal of Asian Earth Sciences 40, 172- 179.

Beard, J. S. and Lofgren, G. E., 1991- Dehydration melting and water saturated melting of basaltic and andesitic greenstones and amphibolites at 1-3 and 6-9 kbar. Journal of Petrology 32, 365-M)l.

Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210- 265.

Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. and Iizuka Y., 2013- Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162- 163: 70- 87.

Coleman, R. G. and Donato, M. M., 1979- Oceanic Plagiogranite Revisited. In: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York.

Coleman, R. G. and Peterman, Z. E., 1975- Oceanic plagiogranite. Journal of Geophysical Research, 80, 1099- 1108.

Deering, C. D., Cole, J. W. and Vogel, T. A., 2008- A rhyolite compositional continuum governed by lower crustal source conditions inthe Taupo Volcanic Zone, New Zealand. Journal of Petrology 49, 2245- 2276.

Dilek, Y. and Thy, P., 2006- Age and petrogenesis of plagiogranite intrusions in the Ankara Melange, central Turkey. Island Arc 15, 44- 57.

Dokuz, A., Tanyolu, E. and Gen, S., 2006- A mantle-and a lower crustderived bimodal suite in the Yusufeli (Artvin) area, NE Turkey: trace element and REE evidence for subduction-related rift origin of early Jurassic Demirkent intrusive complex. Int J Earth Sci 95:370- 394.

Esna-Ashari, A., Tiepolo, M., Valizadeh, M. V., Hassanzadeh, J. and Sepahi, A. A., 2012- Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan Zone, Iran: Journal of Asian Earth Sciences, v. 43, p. 11- 22.

Fazlnia, A. N., Moradian, A., Rezaei, K., Moazzen, M. and Alipour, S., 2007- Synchronous activity of anorthositic and S-type granitic magmas in the Chah-Dozdan batholith, Neyriz, Iran: Evidence of zircon SHRIMP and monazite CHIME dating: Journal of Sciences, Islamic Republic of Iran, v. 18, p. 221- 237.

Fazlnia, A. N., Schenk, V., Van der Straaten, F. and Mirmohammad, M., 2009- Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran: Lithos, v. 112, p. 413- 433.

France, L., Koepke, J., Ildefonse, B., Cichy, S. B. and Deschamps, F., 2010- Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contributions to Mineralogy and Petrology 160, 683- 704.

Frost, B. R., Frost, C. D., Cornia, M., Chamberlain, K. R. and Kirkwood, R., 2006- The Teton-Wind River domain: a 268-267 Ga active margin in the western Wyoming Province. Canadian Journal of Earth Sciences 43, 1489- 1510.

Gill, J. B., Stork, A. K. and Whelan, P. W., 1984- Volcanism accompanying back-arc basin development in the southwest Pacific. Tectonophysics, 102, 207- 224.

Helz, R. T., 1976- Phase relations of basalts in their melting range at PH2O = 5 kbar. II Melt compositions. Journal of Petrology 17, 139- 193.

Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M. and Grove, M., 2008- Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97- 122.

Karsli, O., Ketenci, M., Uysal, I., Dokuz, A., Aydin, F., Chen, B., Kandemir, R. and Wijbrans, J., 2011- Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: Potential parental melts and geodynamic implications. Lithos, 127, 354- 372.

Kay, R. W. and Kay, S. M., 1993- Delemination and delemination magmatism. Tectonophysics 219, 177- 189.

Koepke, J., Berndt, J., Feig, S. T. and Holz, F., 2007- The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153, 67- 84.

Koepke, J., Feig, S. T., Snow, J. and Freise, M., 2004- Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study, Contrib. Mineral. Petrol., 146, 414- 432

Kretz, R., 1983- Symbols for rock-forming minerals. Am. Mineral., 68, 277- 279.

Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. and Mohajjel, M., 2011- U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran: Journal of Asian Earth Sciences, v. 41, p. 238- 249.

Martin, H., 1999- Adakitic magmas: modern analogues of Archean granitoids. Lithos 46, 411- 429.

Mazhari, S. A., Bea, F., Amini, S., Ghalamghash, J., Molina, J. F., Montero, P., Scarrow, J. H. and Williams, I. S., 2009- The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran: A marker of the end of the collision in the Zagros orogen: Journal of the Geological Society, London, v. 166, p. 53- 69.

Mazhari, S. A., Amini, S., Ghalamghash, J. and Bea, F., 2011- Petrogenesis of granitic unit of Naqadeh complex, Sanandaj- Sirjan Zone, NW Iran. Arabian Journal of Geosciences 4(1): 59- 67. 

Mohajjel, M., Fergusson, C. L. and Sahandi, M. R., 2003- Cretaceous-Tertiary convergence and continental collision, Sanandaj–Sirjan zone, Western Iran. Journal of Asian Earth Sciences 21, 397- 412.

Natland, J. H. and Dick, H. J. B., 1996- Melt migration through high-level gabbroic cumulates of the East Pacific Rise at Hess Deep: The origin of magma lenses and the deep crustal structure of fast-spreading ridges, Proc. Ocean Drill Program Sci. Results, 147, 21- 58

Nutman, A. P., Mohajjel, M., Bennett, V. C. and Fergusson, C. L., 2014- Gondwanan Eoarchean–Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence. Can J Earth Sci 51: 272- 285.

O’Connor, J. I., 1965- A classification of quartz-rich igneous rocks based on feldspar ratios. U. S. Geol. Surv. Prof. Pap. 525-B, 79- 84.

Patiño Douce, A. E. and Beard, J. S., 1995- Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbars. Journal of Petrology, 36, 707- 738.

Patiño Douce, A. E. and Beard, J. S., 1996- Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol 37:999- 1024

Patiño Douce, A. E. and McCarthy, T. C., 1998- Meltingof crustal rocks duringcontinental collision and subduction. In: Hacker BR, Liou JG (Eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer, Dordrecht, pp 27- 55

Peacock, S. M., Rushmer, T. and Thompson, A. B., 1994- Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227- 244.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956- 983.

Pe-Piper, G., Piper, D. J. W. and Matarangas, D., 2002- Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos 60, 47- 66.

Rapp, R. P. and Watson, E. B., 1995- Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891- 931.

Rudnick, R. L. and Gao, S., 2003- Composition of the Continental Crust. In R.L. Rudnick, Ed., The Crust, Treatise on Geochemistry, 3, p. 1- 64. Elsevier- Pergamon, Oxford.

Sabzehei, M., 1974- Les me´lange ophiolitiques de la region d’Esfandagheh. Universiy of Grenoble, These, p. 306.

Schandl, E. S. and Gorton, M. P., 2002- Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic geology, v. 90, p. 1217- 1236.

Sepahi, A. A, Shahbazi, H., Siebel, W. and Ranin, A., 2014- Geochronology of plutonic rocks from the Sanandaj-Sirjan zone, Iran and new zircon and titanite U-Th-Pb ages for granitoids from the Marivan pluton. Geochronometria 41: 207- 215.

Shahbazi, H., Siebe, W., Pourmoafee, M., Ghorbani, M., Sepahi, A. A., Shang, C. K. and Vousoughi Abedini, M., 2010- Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): new evidence for Jurassic magmatism. J Asian Earth Sci 39:668- 683

Springer, W. and Seck, H. A., 1997- Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib. Mineral. Petrol. 127:30- 45.

Sun, S. S. and McDonough, W. F., 1989- Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication Vol. 42, pp. 313- 345.

Winchester, J. A. and Floyd, P. A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, p. 325- 343.