شناسایی دسته رخساره FSST در توالی‌های رودخانه‌ای با مثالی از سازند شوریجه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکترا، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 دکترا، مدیریت اکتشاف نفت، شرکت ملی نفت ایران، تهران، ایران

4 کارشناسی ارشد، گروه محیط رسوبی دیرینه، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران

چکیده

در مطالعات چینه‌نگاری سکانسی شناسایی دسته رخساره FSST در توالی‌های رسوبی از کاربرد و اهمیت بسزایی در تعیین موقعیت مرز سکانسی و مطالعات اکتشافی برخوردار می‌باشد. با این حال، شانس تشکیل و حفظ شدگی رخساره‌های مرتبط با آن در توالی‌های رودخانه‌ای بسیار کم است. در این مطالعه به علائم و شواهد شناسایی دسته رخساره FSST در مطالعات چینه‌نگاری سکانسی در قالب مثالی از توالی‌ رودخانه‌ای سازند شوریجه (کرتاسه پیشین (Early Cretaceous)) در شرق حوضه کپه داغ پرداخته می‌شود. این مطالعه با تکیه بر اطلاعات کامل زمین‌شناسی متشکل از 4 برش چینه‌شناسی از رخنمون سازند شوریجه در روستای شوریجه، انجیربلاغ، گردنه مزدوران و قرقره به همراه نمودارهای چاه‌پیمایی و خرده‌های حفاری از 7 حلقه چاه و نیز داده‌های لرزه‌نگاری 3 بعدی از میدان خانگیران می‌باشد. نتایج این مطالعه نشان می‌دهد که با عقب‌نشینی دریا در اوخر ژوراسیک-اوایل کرتاسه رخساره‌های دانه‌ریز آواری و بعضا هیبریدی متعلق به دسته‌رخساره FSST در قاعده سازند شوریجه تشکیل شده است. این رخساره‌ها در محیط‌های کم انرژی دشت سیلابی و دشت ساحلی تشکیل شده‌اند. تشکیل کانال‌ها و گسترش سیستم رودخانه‌ای در شرق کپه‌داغ از عوارض زمین‌شناسی دیگری است که در زمان افت شدید سطح آب/اساس ایجاد شده‌اند. بررسی‌های ژئومورفولوژی آماری کانال‌ها و رخساره‌های تشکیل شده نشان می‌دهد که کانال‌های مذکور در زمان افت سطح آب از نظر هیدرولیکی تعادلی بوده و بار رسوبی را عبور می‌داده‌اند (bypass).

کلیدواژه‌ها


عنوان مقاله [English]

Identification of Falling Stage System Tract in fluvial successions, an example from Shurijeh Formation

نویسندگان [English]

  • Gholamreza Hosseinyar 1
  • Reza Moussavi-Harami 2
  • Iraj Abdollahi fard 3
  • Asadollah Mahboubi 2
  • Hamidreza Mosaffa 4
1 Ph.D. Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
3 Ph.D., Exploration Directorate, National Iranian Oil Company, Tehran, Iran
4 M.Sc., Sedimentary Environment Group, Geological Survey of Iran, Tehran, Iran
چکیده [English]

Identification of falling-stage system tracts (FSST) in sequence stratigraphy has important role in sequence boundary recognition and exploration researches. However, formation and preservation chance of its related facies in the fluvial successions is very low. This study pays to signs and evidence of identification of the FSST in sequence stratigraphy with an example from Lower Cretaceous fluvial Shurijeh Formation in the east Kopeh Dagh Basin. Integration of 3D seismic data with boreholes data from seven wells and four outcrop sections (Shurijeh Village, Anjeer-Bulagh, Mozduran Pass and Qorqoreh) used in this study. Results show that during Late Jurassic-Early Cretaceous marine regression fine-grained and hybrid carbonate-siliciclastic facies in the base of the Shurijeh Formation are belong to falling stage system tract. These facies deposited in low energy condition in flood plain and coastal plain, related to the shoreline trajectory. Based on seismic stratigraphic study, fluvial system tocks place and channels created in the basin, during sea/base level forced regression. Quantitative seismic geomorphological analyses indicate that existed channels were hydraulically as bypassing channels.

کلیدواژه‌ها [English]

  • Sequence Stratigraphy
  • Siliciclastic facies
  • System tract
  • Shurijeh
  • Kopeh Dagh
References

Brown, A. R., 2011- Interpretation of three-dimensional seismic data, 7theddition. American Association of Petroleum Geologists Memoir 42. 646 p. http://store.aapg.org/detail.aspx?id=1025.

Brown, L. F. Jr. and Fisher, W. L., 1977- Seismic strati-graphic interpretation of depositional sys-tems: examples from the Brazilian rift andpull-apart basins. See Payton 1977, pp. 213- 248.

Brunet, M. F., Ershov, A. V., Korotaev, M. V., Melikhov, V. N., Barrier, E., Mordvintsev, D. O. and Sidorova, I. P., 2017- Late Palaeozoic and Mesozoic evolution of the Amu Darya Basin (Turkmenistan, Uzbekistan). In: Brunet, M. F., McCann, T., Sobel, E.R. (eds) Geological Evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society, London, Special Publications, 427. https://doi.org/10.1144/SP427.17.

Catuneanu, O., Galloway, W. E., Kendall, C. G. St. C., Miall, A. D., Posamentier, H. W., Strasser, A. and Tucker, M. E., 2011- Sequence stratigraphy: methodology and nomenclature. Newsl. Stratigr., v. 44/3, p. 173- 245. 10.1127/0078-0421/2011/0011.

Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R., Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E. and Winker, C., 2009- Towards the standardization of sequence stratigraphy. Earth Sci. Rev. 92, 1- 33. https://doi.org/10.1016/j.earscirev.2008.10.003.

Catuneanu, O., 2006- Principles of Sequence Stratigraphy. Elsevier Science and Technology, Amsterdam, The Netherlands. https://www.elsevier.com/books/principles-of-sequence-stratigraphy/catuneanu/978-0-444-51568-1.

Catuneanu, O., 2017- Sequence Stratigraphy: Guidelines for a Standard Methodology. Stratigraphy and Timescales. 2, 1- 57. https://doi.org/10.1016/bs.sats.2017.07.003.

Chopra, S. and Marfurt, K. J., 2007- Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical developments 11. 464p. https://library.seg.org/doi/book/10.1190/1.9781560801900.

Csato, I. and Catuneanu, O., 2012- Systems tract successions under variable climatic and tectonic regimes: a quantitative approach. Stratigraphy, v. 9, no. 2, p. 109- 130.

Golonka, J., 2004- Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381(1-4), 235- 273. https://doi.org/10.1016/j.tecto.2002.06.004.

Holbrook, J., Scott, R. W. and Oboh-Ikuenobe, F. E., 2006- Base-level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences. J Sediment Res 76:162- 174. https://doi.org/10.2110/jsr.2005.10.

Hosseinyar, G., Moussavi-Harami, R., Abdollahie Fard, A., Mahboubi, A., Noemani Rad, R. and Ebrahimi, M. H., 2018- Facies analyses and depositional setting of the Lower Cretaceous Shurijeh-Shatlyk formations in the Kopeh Dagh-Amu Darya Basin. Geological Journal. https://doi.org/10.1002/gj.3264.

Karamitopoulos, P., Weltje, G. J. and Dalman, R. A. F., 2014- Allogenic controls on autogenic variability in fluvio-deltaic systems: inferences from analysis of synthetic stratigraphy. Basin Research 26, 767- 779. https://doi.org/10.1111/bre.12065.

Kavoosi, M. A., Lasemi, Y., Sherkati, S. and Mossavi-Harami, R., 2009- Facies analysis and depositional sequences of the Upper Jurassic Mozduran Formation, a reservoir in the Kopet-Dagh Basin, NE Iran. Journal of Petroleum Geology 32(3), 235- 260. https://doi.org/10.1111/j.1747-5457.2009.00446.x.

Miall, A. D., 2014- Fluvial depositional systems. Springer, 319 p. https://www.springer.com/gp/book/9783319006659.

Miall, A. D., 2006- The geology of fluvial deposits, sedimentary facies, basin analysis, and petroleum geology. Springer. 582p. https://www.springer.com/gp/book/9783540591863.

Mitchum, Jr. R. M., 1977- Seismic stratigraphy and global changes of sea level, part 11: glossary of terms used in seismic stratigraphy. In: Payton, C.E. (Ed.), Seismic Stratigraphy- Applications to Hydrocarbon Exploration, pp. 205- 212. American Association of Petroleum Geologists Memoir 26. https://doi.org/10.1306/M26490C13.

Mortazavi, M., Moussavi-Harami R., Brenner, R. and Mahboubi, A., 2013- Stable isotope record in pedogenic carbonates in northeast Iran: Implications for Early Cretaceous (Berriasian–Barremian) paleovegetation and paleoatmospheric P(CO2) levels. Geoderma 211- 212, 85- 97.  https://doi.org/10.1016/j.geoderma.2013.07.008.

Moussavi-Harami, R. and Brenner, R. L., 1992- Geohistory analysis, petroleum reservoir characteristics of Lower Cretaceous (Neocomian) sandstones, eastern Kopet-Dagh Basin, northeastern Iran. AAPG Bulletin76, 1200- 1208. https://doi.org/10.1306/BDFF89AC-1718-11D7-8645000102C1865D.

Moussavi-Harami, R. and Brenner, R. L. 1993- Diagenesis of non-marine petroleum reservoirs: the Neocomian (Lower Cretaceous) Shurijeh Formation, Kopet-Dagh Basin, NE Iran. Journal of Petroleum Geology 16, 55- 72. https://doi.org/10.1111/j.1747-5457.1993.tb00730.x.

Moussavi-Harami, R., Mahboubi, A., Nadjafi, M., Brenner, R. L. and Mortazavi, M., 2009- Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data. Cretaceous Research 30, 1146- 1156. https://doi.org/10.1016/j.cretres.2009.04.003.

Plint, A. G. and Nummedal, D., 2000- The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In Sedimentary Response to Forced Regression (D. Hunt and R. L. Gawthorpe, Eds.), pp. 1- 17. Geological Society of London Special Publication 172. https://doi.org/10.1144/GSL.SP.2000.172.01.01.

Plint, A. G., 2002- Paleovalley systems in the upper Cretaceous Dunvegan Formation, Alberta and British Columbia. B Can Petrol Geol 50:277- 298. https://doi.org/10.2113/50.2.277.

Ramaekers, P. and Catuneanu, O., 2004- Development and sequences of the Athabasca Basin, Early Proterozoic, Saskatchewan and Alberta, Canada. In: Eriksson, P.G., Altermann, W., Nelson, D., Mueller, W., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology, vol. 12. Elsevier Science Ltd., Amsterdam, pp. 705- 723.

Robert, A. M. M., Letouzey, J., Kavoosi, M. A., Sherkati, Sh., Muller, C., Verges, J. and Aghababaei, A., 2014- Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology 57, 68- 87. https://doi.org/10.1016/j.marpetgeo.2014.05.002.

Ruttner, A., 1991- The Triassic of Aghdarband (AgDarband), NE-Iran, and its preTriassic frame. In: Abhandlungen der Geologischen Bundesanstalt 38, 252 p.

Saadati, H., Al-Iessa, H. J., Alizadeh, B., Tarhandeh, E., Jazayeri, M. H., Bahrami, H. and Rashidi, M., 2016- Geochemical characteristics and isotopic reversal of natural gases in eastern Kopeh-Dagh, NE Iran. Marine and Petroleum Geology, 78, 76- 87. https://doi.org/10.1016/j.marpetgeo.2016.09.004.

Shanley, K. W. and McCabe, P. J., 1994- Perspectives on the sequence stratigraphy of continental strata. Am Assoc Petr Geol B 78:544- 568. https://doi.org/10.1306/BDFF9258-1718-11D7-8645000102C1865D.

Shanley, K. W., McCabe, P. J. and Hettinger, R. D., 1992- Significance of tidal influence in fluvial deposits for interpreting sequence stratigraphy. Sedimentology 39:905- 930. https://doi.org/10.1111/j.1365-3091.1992.tb02159.x.

Stocklin, J., 1977- Structural  correlation  of  alpian  ranges between  Iran  and  Central  Asia. Memorie  Hors. Serie.No.8de la Soc.Geolo.de France 8. pp. 333- 353.

Thomas, J. C., Cobbold, E. R., Shein, V. S. and Le Douaran, S., 1999- Sedimentary record of late Paleozoic to Recent tectonism in central Asia: analysis of subsurface data from the Turan and south Kazak domains. Tectonophysics 313(3), 243- 263. https://doi.org/10.1016/S0040-1951(99)00208-5.

Ulmishek, G. F., 2004- Petroleum geology and resources of the Amu-Darya Basin Turkmenistan Uzbekistan Afghanistan and Iran. Reston: U.S Geological Survey Bulletin. p. 2201-H.

Van Wagoner, J. C., 1995- Overview of sequence stratigraphy of foreland basin deposits: terminology, summary of papers, and glossary of sequence stratigraphy. In: Van Wagoner, J.C., Bertram, G.T. (Eds.), Sequence Stratigraphy of Foreland Basin Deposits: Outcrop and Subsurface Examples from the Cretaceous of North America. Memoir, vol. 64. American Association of Petroleum Geologists, pp. ix- xxi.

Wood, L., 2007- Quantitative seismic geomorphology of Pliocene and Miocene fluvial systems in the northern Gulf of Mexico, USA. J Sediment Res. 77:713- 730. https://doi.org/10.2110/jsr.2007.068.

Wright, V. P. and Marriott, S. B., 1993- The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sediment. Geol., v. 86, p. 203- 210. https://doi.org/10.1016/0037-0738(93)90022-W.

Zanchetta, S., Berra, F., Zanchi, A., Bergomi, M., Caridroit, M., Nicorab, A. and Heidarzadeh, G., 2013- The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Ressearch 24(3-4), 1237- 1266. https://doi.org/10.1016/j.gr.2013.02.013.

Zand-Moghadam, H., Moussavi-Harami, R., Mahboubi, A. and Aghaei, A., 2016- Lithofacies and sequence stratigraphic analysis of the Upper Jurassic siliciclastics in the eastern Kopet-Dagh Basin, NE Iran. Journal of African Earth Sciences117, 48- 61. https://doi.org/10.1016/j.jafrearsci.2016.01.021.

Zeng, H. L. and Hentz, T. F., 2004- High-frequency sequence stratigraphy from seismic sedimentology: applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. Am Assoc Petr Geol B 88:153- 174. https://doi.org/10.1306/10060303018.