شیمی کانی، منشا و تحولات ماگمایی باتولیت ساردوئیه، جنوب شرق کرمان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، بخش زمین شناسی، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه زمین شناسی، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران

3 گروه زمین شناسی ، دانشگاه شهید باهنر، کرمان ، ایران

4 گروه زمین شناسی - دانشکده علوم پایه - دانشگاه هرمزگان - بندرعباس

10.22071/gsj.2018.114172.1370

چکیده

باتولیت الیگوسن ساردوییه، با روند شمال ­باختر- جنوب­ خاور، در استان کرمان و در بخش جنوب خاوری کمان ماگمایی ارومیه- ­دختر قرار دارد و به درون واحدهای آتشفشانی ائوسن متشکل از آندزیت، آندزیت- بازالت و مقدار کمی بازالت همراه با آذرآواری­ها تزریق شده است. این باتولیت از سنگ­های اسیدی و حدواسط مانند دیوریت، تونالیت، گرانودیوریت و مونزوگرانیت تشکیل شده است. بررسی­های شیمی دو کانی پلاژیوکلاز و آمفیبول نشان می­دهد که ترکیب پلاژیوکلازها با An 24-43از الیگوکلاز تا آندزین متغیر بوده و آمفیبول با ترکیب مگنزیوهورنبلند از نوع کلسیک است. مطالعات صحرایی، سنگ‎شناسی و ژئوشیمیایی نشان می­دهند که ماگمای سازنده این توده از نوع I، متاآلومین تا کمی پرآلومین است و در سری کالک­آلکالن جای می‏گیرد. در الگوی عنکبوتی نرمالیز شده به گوشته اولیه، نمونه‎های مورد مطالعه غنی‎شدگی از عناصر با شعاع یونی بزرگ (LILE) مانند U، K، Pb، Sr و تهی‎شدگی از عناصر با قدرت یونی زیاد (HFSE) مانند Nb، Ta، Ti دارند که از ویژگی شاخص ماگماهای موقعیت زمین­ساختی کمان آتشفشانی در حاشیه فعال قاره­ای است. بر اساس مطالعات ژئوشیمیایی باتولیت ساردوییه به نظر می­رسد که در اثر ذوب بخشی سنگ­های متابازیک پوسته زیرین ایجاد شده‎اند.

کلیدواژه‌ها


عنوان مقاله [English]

Mineral chemistry, origin and magmatic evolution of Sarduiyeh batholith, southeast of Kerman

نویسندگان [English]

  • Asma Nazarinia 1
  • Seyed Mohsen Mortazavi 2
  • Mohsen Arvin 3
  • Mohammad Poosti 4
1 Ph.D. Student, Department of Geology, College of Sciences, University of Hormozgan, Iran
2 Department of Geology, Faculty of Sciences, University of Hormozgan, BandarAbbas, Iran
3 Department of Geology, College of Sciences, Shahid Bahonar University of Kerman, Iran
4 Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas
چکیده [English]

The Oligocene Sarduiyeh batholith with NW-SE trend is located in the southeast of the Urumieh-Dokhtar magmatic zone in the Kerman province. This batholith intruded into the Eocene volcanic rocks that comprises of andesite, andesite basalt and subordinate basalt with pyroclastics rocks. The batholith consists of acidic-intermediate rocks such as diorite, tonalite, granodiorite and monzogranite. Mineral Chemistry of plagioclase crystals indicate that their composition varies between oligoclase and andesine with An 24-43 and calcic amphibole have magnesiohornblende compositions. Field, petrological and geochemical studies show that the Sarduiyeh batholith magma is I-type, metaluminous to weakly peraluminous and its belonging to calc-alkaline series. On the primitive mantle-normalized spider diagram, all samples are enriched in large ion lithophile elements such as U, K, Pb and Sr and depleted in high field strength elements such as Ti, Ta and Nb which are characteristics of the volcanic arc setting formed in an active continental margin. Based on geochemical studies, the Sarduiyeh batholith formed as a result of partial melting from metabasic rocks of lower crust.

کلیدواژه‌ها [English]

  • Urumieh-Dokhtar magmatic zone
  • Mineral chemistry
  • Batholith
  • Sarduiyeh

کتابنگاری

صدیقیان، س.، درگاهی، س.، آروین، م.، 1395- سنگ­نگاری، منشأ و تحولات ماگمایی کمپلکس نفوذی خونرنگ، شمال باختر جیرفت، استان کرمان، فصل نامه علوم زمین، شماره 102، صص. 207 تا 220.

References

Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005- Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, v. 94, p.401- 419. DOI: 10.1007/s00531-005-0481-4.

Alavi, M., 1980- Tectonostratigraphic evolution of the Zagrosides of Iran. Geology, v.8, p.144- 149. doi.org/10.1130/0091-7613 (1980)8<144: TEOTZO>2.0.CO; 2.

Alavi, M., 1994- Tectonic of the Zagros orogenic belt of Iran: new data and interpretation. Tectonophysics, v. 229, p. 211- 238. doi.org/10.1016/0040-1951 (94)90030-2.

Alavi, M., 1996- Tectonostratigraphic synthesis and structural style of the Alborz Mountain system in northen Iran. Journal of Geodynamics, v. 21, p.1- 33. doi.org/10.1016/0264-3707 (95)00009-7.

Allen, M. B., 2009- Discussion on the Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, West Iran: a marker of the end of collision in the Zagros orogeny. Journal of the Geological Society of London, v. 166, p. 981- 982. doi.org/10.1144/0016-76492009-020.

Arsalan, M. and Aslan, Z., 2006- Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey. Journal of Asian Earth Sciences, v. 27, p. 177- 193. DOI: 10.1016/j.jseaes.2005.03.002

Ballato, P., Mulch, A., Landgraf, A., Strecker, M. R., Dalconi, M. C., Friedrich, A. and Tabatabaei, S. H., 2010- Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth Planetary Science Letters, v. 300, p.125- 138. doi: 10.1016/j.epsl.2010.09.043.

Berberian, F. and Berberian, M., 1981- Tectono-plutonic episodes in Iran, In Zagros- Hindu Kush-Himalaya Geodynamics Evolution. In: H. K. Gupta and F. M, Delany (Eds.), Washington, D. C. American Geophysical Union, v. 3, p. 5- 32. doi.org/10.1029/GD003p0005.

Berberian, F., Muir, I. D., Pankhurst, R. J., and Berberian, M., 1982- Late Cretaceous and Early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society of London, v. 139, p. 605- 614. doi.org/10.1144/gsjgs.139.5.0605.

Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, v. 18, p. 210- 265. doi.org/10.1139/e81-019.

Chappell, B. W. and White, A. J. R., 1974- Two contrasting granite types: expanded abstract. Pacific Geology, v. 8, p. 173- 174. Doi: 6e09/145b9e7f9ce9c6e65f26cba4eaadf50337b6.

Chappell, B. W. and White, A. J. R., 1992- I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinburgh. Journal of Earth Science, v. 83, p. 1- 26. doi.org/10.1017/S0263593300007720.

Czamanske, G. K., Ishihara, S. and Atkin, S. A., 1981- Chemistry of rock- forming minerals of the Cretaceous- Paleocene batholith in Southwestern Japan and implications for magma genesis. Journal of Geophysical Research, v. 86, p. 10431- 10469.

Defant, M. J. and Drummond, M. S., 1990- Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v. 347, p. 662- 665. doi.org/10.1029/JB086iB11p10431.

Dimitrijevic, M. D., 1973- Sarduiyeh geological map. Iran Geological Survey. https://gsi.ir/fa/map.

Eby, G. N., 1992- Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, v. 20, p. 641- 644. doi.org/10.1130/0091-7613 (1992)020<0641: CSOTAT>2.3.CO; 2.

Floyd, P. A. and Winchester, J. A. 1975- Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary science letters, v. 27, p. 211- 218. doi.org/10.1016/0012-821X (75)90031-X.

Gill, J. B., 1981- Orogeneic Andesites and Plate Tectonics. Springer-Verlag, Berlin. 390 pp. DOI: 10.1093/gji/73.2.581-a.

Harris, N. B. W., Pearce, J. A. and Tindle, A. G., 1986- Geochemical characteristics of collision- zone magmatism. Geological Society, London, Special Publications, v. 19, p. 67- 81. doi.org/10.1144/GSL.SP.1986.019.01.04.

Irvin, T. N. and Baragar, W. R. A., 1971- A guide to the chemical classification of the common volcanic rocks. Canadian. Journal of Earth Sciences, v. 8, p. 523- 548. doi.org/10.1139/e71-055.

Kebede, T. and Koeberl, C., 2003- Petrogenesis of A-Type granitoids from the Wallagga area, western Ethiopia: constrains from mineralogy, Bulk- rock chemistry, Nd and Sr isotopic compositions. Percambrian Research, v. 121, p. 1-24. DOI: 10.1016/S0301-9268(02)00198-5.

Kuster, D, and Harms, U., 1998- Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen: a review. Lithos, v.45, p. 177- 195. DOI: http://doi.org/10.1016/S0024-4937(98)00031-0.

Middlemost, E. A. K., 1994- Naming materials in the magma/igneous rock system. Earth- Science Reviews, v. 37, p. 215- 224. doi.org/10.1016/0012-8252 (94)90029-9.

Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D. and Linthout, K., 1997- Report, Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineralogical Magazine, v. 61, p. 295-321. DOI: 10.1180/minmag.1997.061.405.13.

Liu, D., Wilde, S. A., Wan, Y., Wang, S., Valley, J. W., Kita, N. and Gao, L.,  2009- Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean- Early Neoarchean. Chemical Geology, v. 261, p. 140- 154. DOI: 10.1016/j.chemgeo.2008.10.041.

Maniar, P. D. and Piccoli, P. M., 1989- Tectonic discrimination of granitoids. Geological Society of American, v. 101, p. 635- 643. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/101/5/635/182281.

Mohajjel, M., Fergusson, C. L. and Sahandi, M. R., 2003- Cretaceous- Tertiary convergence and continental collision, Sanandaj-Sirjan zone, Western Iran. Journal of Asian Earth Science, v. 21, p. 397- 412. DOI: 10.1016/S1367-9120(02)00035-4.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984- Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v. 25, p. 956- 983. doi.org/10.1093/petrology/25.4.956.

Pitcher, W. S., 1995- The nature end origin of Granite. Blackie Academic and professional.ed. London.DOI: 10.1007/978-94-011-5832-9.

Richards, J. P., Spell, T., Rameh, E., Razique, A. and Fletcher, T., 2012- High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu± Mo± Au potential: Example from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology, v. 107, p. 295- 332. DOI: 10.2113/econgeo.107.2.295.

Rogers, G. and Hawkesworth, C. J., 1989- A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge.Earth and Planetary Science Letters, v. 91, p. 271- 285. doi.org/10.1016/0012-821X (89)90003-4.

Rollinson, H. R., 1993- Using geochemical data: evaluation, presentation, interpretation. Longman scientific and technical. https://adams.marmot.org/Record/.b17748124ISBN 9780582067011.

Sajona, F. G., Mayry, R. C., Bellon, H., Cotten, J. and Defant, M., 1996- High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, v. 37, p. 693-726. DOI:10.1093/petrology/37.3.693.

Schandl, E. S. and Gorton, M. P., 2002- Application of high field strength elements to discriminate tectonic settings in VMS environments. Economic Geology, v. 97, p. 629- 642. DOI: 10.2113/97.3.629.

Sengor, A. M. C., Altiner, D., Cin, A., Ustaomer, T. and Hsu, K. J., 1988- Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana land. In Gondwana and Tethys (Eds M. G. Audley-Charles and A. Hallam), pp. 119- 181. Geological Society of London, Special Publication no. 37.doi:10.1144/GSL.SP.1988.037.01.09.

Shelley, D., 1993- Igneous and metamorphic rocks under the microscope. Chapman and Hall. DOI: 10.1016/0377-0273(93)90035-p.

Smith, J. V. and Brown, W. L., 1988-Feldespare Mineral crystal structure physical, chemical and Microtextural properties. Springer, v. 58, p. 68-81. DOI: 10.1007/978-3-642-72594-4.

Stocklin, J., 1968- Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin, v. 52, p. 1229- 1258. doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.

Sun, S. and Mc Donough, W. F., 1989- Chemical and isotopic systematic of oceanic basalts: implications for processes. In: Magmatism in the ocean basins. Geological Society London Special Publication, v. 42, p. 313- 345. doi.org/10.1144/GSL.SP.1989.042.01.19.

Verdel, Ch., Wernicke, B. P., Hassanzadeh, J. and Guest, B., 2011- A Paleogene extensional arc flare-up in Iran, Tectonics 30. DOI: 10.1029/2010TC002809.

Waight, T. E., Weaver, S. D. and Muir, R. J., 1998- The Hohonu batholiths of north Westland, New Zealand: granitoid compositions controlled by source H2O content and generated during tectonic transition. Contribution to Mineralogy and Petrology, v. 130, p. 225- 239. doi.org/10.1007/s004100050.

Weaver, B. L., and Tarney, J., 1984- Empirical approach to estimating the composition of the continental crust, Nature, v. 310, p. 575-577. DOI: 10.1038/310575a0.

Whitney, D. L. and Evans, B. W., 2010- Abbreviations for names of rock-forming minerals. American Mineralogist, v. 95, p. 185- 187. doi.org/10.2138/am.2010.3371.

Wilson, M., 1989- Igneous Petrogenesis. Unwin Hyman London, 466p. doi.org/10.1007/978-1-4020-6788-4.

Winter, J. D., 2001- An Introduction to Igneous and Metamorphic Petrology, Prentice Hall, 697p. ISBN 0-13-21*03142-0, https://trove.nla.gov.au/work/27019622.

Wolf, M. B. and Wyllie, P. J., 1994- Dehydration-melting of amphibolite at 10 kbar: effects of temperature and time. Contribution to Mineralogy and Petrology, v. 115, p. 369- 383. doi.org/10.1007/BF00320972.

Zarasvandi, A., Liaghat, S. and Zentilli, M., 2005- Geology of the Darreh-Zerreshk and Ali Abad porphyry copper deposits, central Iran. International Geology Review, v. 47, p. 620- 646. doi.org/10.2747/0020-6814.47.6.620.

Zen, E. A., 1986- Aluminum enrichment in silicate melts by fractional crystallization, some mineralogical and petrographic constraints. Journal of Petrology, v. 27, p. 1095- 1118. doi.org/10.1093/petrology/27.5.1095.