نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین‌شناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در محدوده شمال اردبیل (از نمین تا لاهرود) توالی متنوع و گسترده‌ای از فعالیت­‌های ماگمایی بازی تا حدواسط و اسیدی از ائوسن تا کواترنری رخنمون دارند. ترکیبات سنگی در این منطقه از گدازه‌های عمدتاً بازالتی همراه با گنبدهای داسیتی و ریولیتی در محدوده نمین تا بازالت و آندزیت بازالتی در محدوده لاهرود متغیر است. بررسی ترکیب شیمیایی الیوین در الیوین بازالت­‌ها نشان‌دهنده ترکیب فورستریتی آنها از 67/8 تا 92/7 است. همچنین کلینوپیروکسن­‌ها از نوع دیوپسیدی بوده و پلاژیوکلازها ترکیب لابرادوریتی تا بیتونیتی دارند. بیگانه‌بلورهای (زنوکریست‌ها) گارنت موجود در گنبدهای ریولیتی از نوع آلماندین می‌باشند. بررسی عناصر نادر خاکی در جریان‌های گدازه‌ای، قطعات سنگی و همچنین گنبدهای داسیتی- ریولیتی منطقه نشانگر غنی‌شدگی در عناصر نادر خاکی سبک به سنگین است. سنگ‌های مافیک-حدواسط منطقه سرشت شوشونیتی و برخی نیز کالک-آلکالن با پتاسیم بالا و گنبدهای داسیتی و ریولیتی سرشت آداکیتی نشان می­‌دهند. ویژگی‌های ژئوشیمیایی و ایزوتوپی سنگ‌های بازالتی-آندزیتی منطقه شمال اردبیل-لاهرود نشان‌دهنده تشکیل آنها از ذوب بخشی یک گوه گوشته‌ای متاسوماتیسم شده توسط رسوبات و سیالات حاصل از ورقه فرورانده در زون فرورانشی ایران طی ائوسن است. همچنین ویژگی‌های ژئوشیمیایی و ایزوتوپی گنبدهای داسیتی-ریولیتی میوسن نشان‌دهنده منشأ گرفتن آنها از ذوب بخشی بخش‌های زیرین پوسته قاره‌ای ستبر شده ایران می‌باشد.

کلیدواژه‌ها

موضوعات

رحیم‌زاده، ف. و باباخانی، ع.ر.، 1365، نقشه زمین‌شناسی اردبیل، مقیاس1:250,000، سازمان زمین شناسی و اکتشافات معدنی کشور.
Aghazadeh, M., Castro, A., Badrzadeh, Z., and Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148, 980-100, doi: 10.1017/S0016756811000380.
Aghazadeh, M., Hou, Z.Q., Badrzadeh, Z., and Zhou, L.M., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70, 385-406, doi: 10.1016/j.oregeorev.2015.03.003.
Allen, M.B., and Armstrong, H.A., 2008. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 52-58,doi: 10.1016/j.palaeo.2008.04.021.
Ardila, A.M.M., Paterson, S.R., Memeti, V., Parada, M.A., and Molina, P.G., 2019. Mantle driven cretaceous flare-ups in Cordilleran arcs.Lithos, 326, 19-27, doi: 10.1016/j.lithos.2018.12.007.
Ashrafi, N., Hasebe, N., and Jahangiri, A., 2018. Cooling history and exhumation of the Nepheline Syenites, NW Iran: Constraints from Apatite fission track. Iranian Journal of Earth Sciences, 10, 109-120.
Billen, M.I., and Arredondo, K.M., 2018. Decoupling of plate-asthenosphere motion caused by non-linear viscosity during slab folding in the transition zone.Physics of the Earth and Planetary Interiors, 281, 17-30, doi: 10.1016/j.pepi.2018.04.011.
Chiaradia, M., 2009. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chemical Geology, 265, 468-487, doi: 10.1016/j.chemgeo.2009.05.014.
Defant, M., Jackson, T., Drummond, M.d., De Boer, J., Bellon, H., Feigenson, M., Maury, R., and Stewart, R., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, 149, 569-57, doi: 10.1144/gsjgs.149.4.0569.
Drummond, M.S., and Defant, M.J., 1990. A model for trondhjemite‐tonalite‐dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95, 21503-21521, doi: 10.1029/JB095iB13p21503.
Duggen, S., Portnyagin, M., Baker, J., Ulfbeck, D., Hoernle, K., Garbe-Schonberg, D., and Grassineau, N., 2007. Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting. Geochimica Et Cosmochimica Acta, 71, 452-480, doi: 10.1016/j.gca.2006.09.018.
Farner, M.J., and Lee, C.-T.A., 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470, 96-107, doi: 10.1016/j.epsl.2017.04.025.
Hastie, A.R., Kerr, A.C., Pearce, J.A., and Mitchell, S., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of Petrology, 48, 2341-2357, doi: 10.1093/petrology/egm062.
Iveson, A.A., Rowe, M.C., Webster, J.D., and Neill, O.K., 2018. Amphibole-, Clinopyroxene- and Plagioclase-Melt Partitioning of Traceand Economic Metals in Halogen-Bearing Rhyodacitic Melts. Journal of Petrology, 59, 1579-1604, doi: 10.1039/petrology/egy072.
Jacques, G., Hoernle, K., Gill, J., Hauff, F., Wehrmann, H., Garbe-Schönberg, D., van den Bogaard, P., Bindeman, I., and Lara, L.E., 2013. Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0 S): constraints on mantle wedge and slab input compositions. Geochimica et Cosmochimica Acta, 123, 218-243, doi: 10.1016/j.gca.2013.05.016.
Jacques, G., Hoernle, K., Gill, J., Wehrmann, H., Bindeman, I., and Lara, L.E., 2014. Geochemical variations in the Central Southern Volcanic Zone, Chile (38-43 degrees S): The role of fluids in generating arc magmas. Chemical Geology, 371, 27-45, doi: 10.1016/j.chemgeo.2014.01.015.
Kargaranbafghi, F., Neubauer, F., and Genser, J., 2015. Rapid Eocene extension in the Chapedony metamorphic core complex, Central Iran: Constraints from Ar-40/Ar-39 dating. Journal of Asian Earth Sciences, 106, 156-168, doi: 10.1016/j.jseaes.2015.03.010.
Karsli, O., Dokuz, A., Uysal, İ., Aydin, F., Kandemir, R., and Wijbrans, J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos, 114, 109-120, doi: 10.1016/j/lithos.2009.08.003.
Kepezhinskas, P., Defant, M.J., and Drummond, M.S., 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica Et Cosmochimica Acta, 60, 1217-1229, doi: 10.1016/0016-7037(96)00001-4.
Kheirkhah, M., Neill, I., Allen, M.B., Emami, M.H., and Ghadimi, A.S., 2020. Distinct sources for high-K and adakitic magmatism in SE Iran. Journal of Asian Earth Sciences, 196, 104355, doi: 10.1016/j.jseaes.2020.104355.
Kimura, J.-I., Hacker, B.R., van Keken, P.E., Kawabata, H., Yoshida, T., and Stern, R.J., 2009. Arc Basalt Simulator version 2, a simulation for slab dehydrationand fluid-fluxed mantle melting for arc basalts: Modeling scheme and application. Geochemistry, Geophysics, Geosystems, 10, n/a-n/a, doi: 10.1029/2008gc002217.
Lechmann, A., Burg, J.P., Ulmer, P., Guillong, M., and Faridi, M., 2018. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence,Lithos, 304, 311-328, doi: 10.1016/j.lithos.2018.01.030.
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), 411-429, doi: 10.1016/S0024-4937(98)00076-0.
Moazzen, M., Salimi, Z., Rolland, Y., Bröcker, M., and Hajialioghli, R., 2020. Protolith nature and P–T evolution of Variscan metamorphic rocks from the Allahyarlu complex, NW Iran. Geological Magazine, 157(11), 1853-1876, doi: 10.1017/S0016756820000102.
Moghadam, H.S., Griffin, W.L., Kirchenbaur, M., Garbe-Schönberg, D., Zakie Khedr, M., Kimura, J.-I., Stern, R.J., Ghorbani, G., Murphy, R., Y O’Reily, S., Aria, S., and Maghdour-Manshhour, R., 2018a. Roll-Back, Extension and Mantle Upwelling Triggered Eocene Potassic Magmatism in NW Iran. Journal of Petrology, 59, 1417-1465, doi: 10.1093/petrology/egy067.
Moghadam, H.S., Li, Q.L., Griffin, W.L., Stern, R.J., Ishizuka, O., Henry, H., Lucci, F., O'Reilly, S Y., and Ghorbani, G., 2020. Repeated magmatic buildup and deep “hot zones” in continental evolution: The Cadomian crust of Iran: Earth and Planetary Science Letters, 531, doi: 10.1016/j.epsl.2019.115989.
Moghadam, M.C., Tahmasbi, Z., Ahmadi-Khalaji, A., and Santos, J.F., 2018b. Petrogenesis of Rabor-Lalehzar magmatic rocks (SE Iran): Constraints from whole rock chemistry and Sr-Nd isotopes. Chemie Der Erde-Geochemistry, 78, 58-77, doi: 10.1016/j.chemer.2017.11.004.
Mouthereau, F., Lacombe, O., and Verges, J., 2012. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532, 27-60, doi: 10.1016/j.tecto.2012.01.022.
Omrani, J., Agard,  P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L., 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106, 380-398, doi: 10.1016/j.lithos.2008.09.008.
Pang, K.-N., Chung, S.-L., Zarrinkoub, M.H., Li, X.-H., Lee, H.-Y., Lin, T.-H., and Chiu, H.-Y., 2016. New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia–Eurasia collision zone. Lithos, 264, 348-359, doi: 10.1016/j.lithos.2016.08.042.
Pearce, J.A., and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251-285, doi: 10.1146/annurev.ea.23.050195.001343.
Pearce, J.A., Harris, N.B., and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks. Journal of Petrology, 25, 956-983, doi: 10.1093/petrology/25.4.956.
Prelević, D., and Foley, F.S., 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters, 256(1-2), 120-135, doi: 10.1016/j.epsl.2007.01018.
Prelević, D., Jacob, D.E., and Foley, S.F., 2013. Recycling plus: a new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. Earth and Planetary Science Letters, 362, 187-197, doi: 10.1016/j.epsl.2012.11.135.
RodrÍguez, C., Sellés, D., Dungan, M., Langmuir, C., and Leeman, W., 2007. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36· 2 S; Andean Southern Volcanic Zone, Central Chile). Journal of Petrology, 48, 2033-2061, doi: 10.1093/Petrology/egm049.
Saginor, I., Gazel, E., Condie, C., and Carr, M.J., 2013. Evolution of geochemical variations along the Central American volcanic front. Geochemistry Geophysics Geosystems, 14, 4504-4522, doi: 10.1002/ggge.20259.
Salehi Nejad , H., Ahmadipour, H., Moinzadeh, H., Moradian, A., and Santos, J.F., 2020. Geochemistry and petrogenesis of Raviz-Shanabad intrusions (SE UDMB): an evidence for Late Eocene magmatism. International Geology Review, 1-18, doi: 10.1080/00206814.2020.1728585.
Sepidbar, F., Ao, S., Palin, R.M., Li, Q.-L., and Zhang, Z., 2019. Origin, age and petrogenesis of barren (low-grade) granitoids from the Bezenjan-Bardsir magmatic complex, southeast of the Urumieh-Dokhtar magmatic belt, Iran. Ore Geology Reviews, 104, 132-147, doi: 10.1016/j.oregeorev.2018.10.008.
Sun, S.-S., McDonough, W.-s., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological society, London, special publications, 42, 313-345, doi: 10.1144/GSL.SP.1989.042.01.19.
Tadayon, M., Rossetti, F., Zattin, M., Nozaem, R., Calzolari, G., Madanipour, S., and Salvini, F., 2017. The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone. Tectonics, 36, 3038-3064, doi: 10.1002/2017tc004595.
Tang, G.J., Wang, Q., Wyman, D.A., Chung, S.L., Chen, H.Y., and Zhao, Z.H., 2017. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition. Journal of Geophysical Research: Solid Earth, 122, 1934-1948, doi: 10.1002/2016jb013678.
Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011. A Paleogene extensional arc flare‐up in Iran. Tectonics, 30(3), doi:10.1029/2010TC002809.
Verdel, C., Wernicke, B.P., Ramezani, J., Hassanzadeh, J., Renne, P.R., and Spell, T.L., 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geological Society of America Bulletin, 119, 961-977, doi: 10.1130/b26102.1.
Winchester, J.A., and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343, doi: 10.1016/0009-2541(77)90057-2.
Workman, R.K., and Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53-72, doi: 10.1016/j.epsl.2004.12.005.
Xu, W.-C., Zhang, H.-F., Luo, B.-j., Guo, L., and Yang, H., 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos, 232, 197-210, doi: 10.1016/j.lithos.2015.07.001.
Zhao, Z., Mo, X., Dilek, Y., Niu, Y., DePaolo, D.J., Robinson, P.T., Zhu, D.-C., Sun, C., Dong, G., Zhou, S., Luo, Z., and Hou, Z., 2009. Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113, 190-212, doi: 10.1016/j.lithos.2009.02.004.
Zhao, Z., Xiong, X., Wang, Q., Wyman, D., Bao, Z., Bai, Z., and Qiao, Y., 2008. Underplating-related adakites in Xinjiang tianshan, China. Lithos, 102, 374-391, doi: 10.1016/j.lithos.2007.06.008.