شبیه‎سازی سناریوهای محتمل رخداد زمین‌لرزه در تهران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگر پسا دکترا، دانشکده مهندسی، دانشگاه گیفو، گیفو، ژاپن

2 دکترا، دانشکده علوم پایه، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشجوی دکترا، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

4 کارشناسی ارشد، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

شهر تهران با ترکیبی از جمعیت زیاد، گسل‌های فعال، شواهد زمین‌لرزه‌های تاریخی و آسیب پذیری سازه‌های ساخته شده در آن، ریسک بالایی در برابر زمین‌لرزه دارد. در مطالعه حاضر، با توجه به گزارش‏ها و مقالات زمین‌شناسی منتشر شده در دهه‌ی گذشته، 3 سناریوی زمین‌لرزه برای گسیختگی گسل‌های مشا، نیاوران و پارچین در نظر گرفته و شتاب‌نگاشت‌هایی در شهر تهران شبیه‌سازی شده ‌است. از روش تصادفی چشمه نقطه‌ای با اصلاح متغیر فاصله برای در نظرگرفتن اثرات هندسه گسیختگی استفاده و همچنین نتایج مطالعات پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله در سال‌های اخیر در مورد بزرگنمایی ساختگاه در تهران برای در نظر گرفتن اثرات ساختگاهی به کار گرفته شده است. نتایج شبیه‌سازی نشان‌دهنده شتاب بیشنه قابل توجه در شمال تهران برای گسل نیاوران و گسل پارچین در جنوب تهران است؛ همچنین متوسط شدت زمین‌لرزه مرکالی برای این دو سناریو به ترتیب در سه منطقه و یک منطقه شهری تهران برابر با 9 است که نشان از خرابی و خسارت زیاد در آن مناطق دارد. با استفاده از نتایج شبیه‌سازی، یک برآورد اولیه از تلفات ناشی از سناریوهای مفروض گسیختگی صورت گرفته است. تعداد تلفات جانی (مرگ‌ومیر) ناشی از سناریوهای گسیختگی گسل‌های مشا، نیاوران و پارچین بنا بر این برآورد به ترتیب برابر با حدود 5000، 117000 و 85000 نفر خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of probable scenarios ofearthquake occurrences in Tehran

نویسندگان [English]

  • M. Samaei 1
  • A. Barzegari 2
  • M .R. Ghavimipanah 3
  • F. Ja’afari 3
  • A. Shami 4
1 Postdoctoral Fellow, Faculty of Engineering, Gifu University, Gifu, Japan
2 Ph.D., Faculty of Basic Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
3 Ph.D. Student, Faculty of Geological Sciences, Kharazmin University, Tehran, Iran
4 M.Sc., Faculty of Geographical Ssciences, Tehran University, Tehran, Iran
چکیده [English]

Tehran metropolitan with a high population, existence of active faults, evidence of historical earthquakes and vulnerability of its infrastructures is exposed to a high seismic risk. In the present study, considering geological reports and papers published in the past decade, three scenario earthquakes for rupture of Mosha, Niavaran and Parchin faults are presented, and synthetic accelerograms were simulated in the Tehran metropolitan. Stochastic point source method with modification of distance parameter for considering finite fault effects is adopted; and results of studies carried out by International Institute of Earthquake Engineering and Seismology (IIEES) in the recent years have been considered to account for site effects. Simulation results show considerable PGA values for Niavaran fault rupture in northern Tehran and for Parchin fault rupture in southern Tehran; also average Modified Mercali Intensity (MMI) for these scenarios are equal to IX for districts 3 and 1 in Tehran, which indicates high damage potential in those areas. Using the simulation results, we have also carried out a preliminary estimation of casualty based on the assumed scenario earthquakes. Casualty (death toll) for rupture scenarios of Mosha, Niavaran and Parchin faults are estimated to be about 5000, 117000 and 85000, respectively.

کلیدواژه‌ها [English]

  • Earthquake simulation
  • Earthquake vulnerability
  • Damage prediction
  • Tehran seismicity

بربریان، م.، قرشی، م.، ارژنگ روش، ب. و مهاجراشجعی، آ.، 1371- پژوهش و بررسی ژرف نوزمین‌ساخت، ‌لرزه‌زمین‌ساخت و خطر زمین‌لرزه- گسلش در گستره قزوین و پیرامون (پژوهش و بررسی لرزه‎زمین‎‌ساخت ایران زمین: بخش ششم) سازمان زمین شناسی کشور ، گزارش شماره 62.

تاتار، م.، مومنی، م. و یمینی‌فرد، م.، 1393- خردلرزه‌خیزی و لرزه‌زمین‌ساخت ناحیه گرمسار، فصلنامه علوم زمین، شماره 94، صص. 289 تا 298.

جمور، ی.، هاشمی طباطبایی، س.، صدیقی، م. و  نانکلی، ح.، 1391- برآورد آهنگ GPS حرکات زمین‌ساخت نوار شمالی تهران بزرگ با نگرشی ویژه به گسل شمال تهران، فصلنامه علوم زمین، شماره 83، صص. 211 تا 218.

زعفرانی، ح. و نورزاد، ن.، 1393- زلزله‌شناسی مهندسی و شبیه‌سازی زمین‌لرزه، انتشارات دانشگاه تهران، 264 ص.

سمائی، م. ، میاجیما، م. و یزدانی، آ.، 1393الف- پیش‌بینی جنبش نیرومند زمین به روش گسل محدود تصادفی: مطالعه موردی، گسل نیاوران، تهران، فصلنامه پژوهشی زمین پویا، سال دوم، شماره سوم، ص 13-23.

سمائی، م. ، میاجیما، م. و یزدانی، آ.، 1393ب- مروری بر تولید شتابنگاشت‌های مصنوعی به روش چشمه نقطه‌ای تصادفی، مطالعه موردی تهران، هشتمین کنگره ملی مهندسی عمران، بابل، ایران.

قایمقامیان، م.، منصوری، ب.، امینی حسینی، ک.، تسنیمی، ع.، حقشناس، آ.، گواهی، ن.، 1389-تعیین ضرایب بزرگنمایی ساختگاه و استخراج توابع شکنندگی و روابط تلفات انسانی در اثر زلزله برای ساختمان‌های شهر تهران، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله .

مرکز آمار ایران،  1385- سرشماری عمومی نفوس و مسکن، نتایج کلی شهر تهران، 117 ص.

مرکز تحقیقات راه،  مسکن و شهرسازی، 1393- آیین نامه طراحی ساختمان‌ها در برابر زلزله  (استاندارد 2800)، ویرایش 4، 212 ص.

منصوری، ب.، قایمقامیان، م.، امینی حسینی، ک. و گواهی، ع.، 1390- توسعه مدل لرزه‌ای خسارت جانی (مطالعه موردی منطقه 17 شهر تهران)، پژوهشگاه بین‎المللی زلزله‌شناسی و مهندسی زلزله .

نظری، ح.، 1393- بررسی تحلیلی زمان احتمال رخداد زمین‌لرزه در گستره تهران: مروری بر پژوهش های پارینه لرزه‌شناسی، فصلنامه علوم زمین، شماره‌ی 94، صص. 263 تا 272. 

نظری، ح.، ریتز، ژ. ف.، سلامتی، ر.، قرشی، م.، قاسمی، ع.، حبیبی، ح.، جمالی، ف. و جوادی‌پور، ش.، 1388- ساختارهای خطی جنوب تهران (سری گسل‎های ری- کهریزک): پرتگاه گسل یا پدیده‌ای زمین‌ریخت‌شناختی؟!، فصلنامه علوم زمین، شماره 73، صص. 109 تا 114.

یزدانی، آ. و کوثری، م.، 1392- مقدمه‌ای بر تحلیل خطر احتمالی زمین‌لرزه، انتشارات دانشگاه کردستان، 180 ص.

یمینی‌فرد، م.، سیاهکلی مرادی، ع.، حسینی، م.و نوروزی، ر.، 1388- مطالعه لرزه‌خیزی تهران بزرگ و مجاورت آن با استفاده از داده‌های ثبت شده در شبکه لرزه‌نگاری شهر تهران، فصلنامه علوم زمین، شماره 73، صفحه 133 تا 138.

 

References

Abbassi, M. R. and Farbod, Y., 2009- Faulting and folding in quaternary deposits of Tehran’s piedmont (Iran). Journal of Asian Earth Sciences, 34(4): 522-531.

Ashtari, M., Hatzfeld, D. and Kamalian, N., 2005- Microseismicity in the region of Tehran. Tectonophysics, 395(3-4): 193-208.

Atkinson, G. M. and Assatourians, K., 2015- Implementation and validation of EXSIM (a stochastic finite‐fault ground‐motion simulation algorithm) on the SCEC broadband platform. Seismological Research Letters, 86(1): 48-60.

Atkinson, G. M. and Boore, D. M., 2006- Earthquake ground-motion prediction equations for eastern North America. Bulletin of the seismological society of America, 96 (6): 2181-2205.

Atkinson, G. M. and Silva, W., 2000- Stochastic modeling of California ground motions. Bulletin of the Seismological Society of America, 90(2): 255-274.

Berberian, M., 1994- Natural hazards and the first earthquake catalogue of Iran: historical hazards in Iran prior to 1900. UNESCO.

Beresnev, I. A. and Atkinson, G. M., 1997- Modeling finite-fault radiation from the ωn spectrum. Bulletin of the Seismological Society of America, 87(1): 67-84.

Beresnev, I. A. and Atkinson, G. M., 1998- FINSIM--a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismological Research Letters, 69(1): 27-32.

Boore, D. M. and Joyner, W. B., 1997- Site amplifications for generic rock sites. Bulletin of the seismological society of America, 87(2): 327-341.

Boore, D. M. and Thompson, E. M., 2015- Revisions to some parameters used in stochastic‐method simulations of ground motion. Bulletin of the Seismological Society of America.

Boore, D. M., 1983- Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73(6A): 1865-1894.

Boore, D. M., 2003- Simulation of ground motion using the stochastic method. Pure and applied geophysics, 160(3-4): 635-676.

Boore, D. M., 2005- SMSIM---Fortran programs for simulating ground motions from earthquakes: Version 2.3---A Revision of OFR 96-80-A.

Boore, D. M., 2009- Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM. Bulletin of the Seismological Society of America, 99(6): 3202-3216.

Boore, D. M., Stewart, J. P., Seyhan, E. and Atkinson, G. M., 2014- NGA-West 2 equations for predicting PGA, PGV, and 5%-Damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3): 1057–1085.

Brune, J. N., 1970- Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26): 4997-5009.

Brune, J. N., 1971- Tectonic stress and the spectra of seismic shear waves from earthquakes: correction. Journal of Geophysical Research, 76: 5002.

Chen, S. Z. and Atkinson, G. M., 2002- Global comparisons of earthquake source spectra. Bulletin of the Seismological Society of America, 92(3): 885-895.

Coburm, A., Spence, R. and Pomonis, A., 1992- Factors determining human casualty levels in earthquakes: mortality prediction in building collapse, Proceedings of the tenth world conference on earthquake engineering, pp. 5989-5994.

Crane, S. and Motazedian, D., 2014- Low-frequency scaling applied to stochastic finite-fault modeling. Journal of seismology, 18(1): 109-122.

Gholipour, Y., Bozorgnia, Y., Rahnama, M., Berberian, M., Ghorashi, M., Talebian, Nazari, H., Shoja-Taheri, J. and Shafiei, A., 2008- Probabilistic seismic hazard analysis - phase I, greater tehran regions, 180.

Hamzehloo, H. and Mahood, M., 2012- Ground‐motion attenuation relationship for east central Iran. Bulletin of the Seismological Society of America, 102(6): 2677-2684.

Hassani, B., Zafarani, H., Farjoodi, J. and Ansari, A., 2011- Estimation of site amplification, attenuation and source spectra of S-waves in the East-Central Iran. Soil Dynamics and Earthquake Engineering, 31(10): 1397-1413.

Jackson, J., 2001- Living with earthquakes: know your faults. Journal of Earthquake Engineering, 5(S1): 5-123.

JICA, 2000- The Study on Seismic Microzoning of the Greater Tehran Area in the Islamic Republic of Iran. Japan International Cooperation Agency, pp. 379.

Joyner, W. B. and Boore, D. M., 1981- Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 71(6): 2011-2038.

Kale, Ö., Akkar, S., Ansari, A. and Hamzehloo, H., 2015- A Ground‐Motion Predictive Model for Iran and Turkey for Horizontal PGA, PGV, and 5% Damped Response Spectrum: Investigation of Possible Regional Effects. Bulletin of the Seismological Society of America, 105(2A): 963-980.

Landgraf, A., Ballato, P., Strecker, M. R., Friedrich, A., Tabatabaei, S. H. and Shahpasandzadeh, M., 2009- Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains Iran: implications for fault-system evolution and interaction in a changing tectonic regime. Geophysical Journal International, 177(2): 676-690.

Motazedian, D. and Atkinson, G. M., 2005- Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency. Bulletin of the Seismological Society of America, 95(3): 995-1010.

Motazedian, D., 2006- Region-Specific Key Seismic Parameters for Earthquakes in Northern Iran. Bulletin of the Seismological Society of America, 96(4A): 1383-1395.

Nazari, H., Ritz, J. F., Salamati, R., Shahidi, A., Habibi, H., Ghorashi, M. and Bavandpur, A. K., 2010- Distinguishing between fault scarps and shorelines: the question of the nature of the Kahrizak, North Rey and South Rey features in the Tehran plain (Iran). Terra Nova, 22(3): 227-237.

Ritz, J. F., Nazari, H., Balescu, S., Lamothe, M., Salamati, R., Ghassemi, A., Shafei, A., Ghorashi, M. and Saidi, A., 2012- Paleoearthquakes of the past 30,000 years along the North Tehran Fault (Iran). Journal of Geophysical Research, 117(B6).

Ritz, J., Balescu, S., Soleymani, S., Abbassi, M., Nazari, H., Feghhi, K., Shabanian, E., Tabassi, H., Farbod, Y. and Lamothe, M., 2003- Determining the long-term slip rate along the Mosha Fault, Central Alborz, Iran. Implications in terms of seismic activity, Proceedings of the 4th International Conference on Seismology and Earthquake Engineering, pp. 12-14.

Samaei, M. and Miyajima, M., 2016- Source Spectra of 2012 Ahar-Varzaghan Double Earthquakes, Northwestern Iran Journal of Seismology and Earthquake Engineering, 18(1): 1-11.

Samaei, M., Miyajima, M. and Nojima, N., 2016a- Attenuation of Fourier spectra for 2012 Ahar–Varzaghan earthquakes, Northwestern Iran. Journal of the Earth and Space Physics, 41(4): 23-38.

Samaei, M., Miyajima, M., Saffari, H. and Tsurugi, M., 2012- Finite Fault Modeling of Future Large Earthquake from North Tehran Fault in Karaj, Iran. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering and Earthquake Engineering (SE/EE)), 68(4): I_20-I_30.

Samaei, M., Miyajima, M., Tsurugi, M. and Fallahi, A., 2013- Source and Path Parameters for Recorded Earthquakes in Tehran Province, Iran. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering and Earthquake Engineering (SE/EE)), 69( 4): I_980-I_988.

Samaei, M., Miyajima, M., Yazdani, A. and Jaafari, A., 2016b- High frequency decay parameter (kappa) for Ahar-Varzaghan double earthquakes, Iran (Mw 6.5 and 6.3). Journal of Earthquake and Tsunami, 10(2): 1640006_1-1640006_14.

Shafiee, A. and Azadi, A., 2007- Shear-wave velocity characteristics of geological units throughout Tehran City, Iran. Journal of Asian Earth Sciences, 29(1): 105-115.

Shearer, P. M., 2009- Introduction to seismology. Cambridge University Press.

Solaymani Azad, S., Ritz, J. F. and Abbassi, M. R., 2011- Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): Morphotectonics and paleoseismological investigations. Tectonophysics, 497(1): 1-14.

Spence, R. J., Scawthorn, C. and So, E., 2011- Human casualties in earthquakes: progress in modelling and mitigation, 29. Springer Science and Business Media.

Tatar, M., Hatzfeld, D., Abbassi, A. and Fard, F. Y., 2012- Microseismicity and seismotectonics around the Mosha fault (Central Alborz, Iran). Tectonophysics, 544: 50-59.

Trifunac, M. and Brady, A., 1975- On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65(1): 139-162.

Wald, D. J., Quitoriano, V., Heaton, T. H. and Kanamori, H., 1999a- Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake spectra, 15(3): 557-564.

Wald, D. J., Quitoriano, V., Heaton, T. H., Kanamori, H., Scrivner, C. W. and Worden, C. B., 1999b- TriNet “ShakeMaps”: Rapid generation of peak ground motion and intensity maps for earthquakes in southern California. Earthquake Spectra, 15(3): 537-555.

Wells, D. L. and Coppersmith, K. J., 1994- New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002.

Yaghmaei-Sabegh, S. and Lam, N. T., 2010- Ground motion modelling in Tehran based on the stochastic method. Soil Dynamics and Earthquake Engineering, 30(7): 525-535.

Yaghmaei-Sabegh, S., Shoghian, Z. and Sheikh, M. N., 2014- A new model for the prediction of earthquake ground-motion duration in Iran. Natural hazards, 70(1): 69-92.

Yaghmaei-Sabegh, S., Tsang, H. H. and Lam, N. T., 2011- Conversion between Peak Ground Motion Parameters and Modified Mercalli Intensity Values. Journal of Earthquake Engineering, 15(7): 1138-1155.

Yazdani, A. and Kowsari, M., 2013- Earthquake ground-motion prediction equations for northern Iran. Natural hazards, 69(3): 1877-1894.

Yenier, E. and Atkinson, G. M., 2014- Equivalent point‐source modeling of moderate‐to‐large magnitude earthquakes and associated ground‐motion saturation effects. Bulletin of the Seismological Society of America.

Zafarani, H., Hassani, B. and Ansari, A., 2012- Estimation of earthquake parameters in the Alborz seismic zone, Iran using generalized inversion method. Soil Dynamics and Earthquake Engineering, 42: 197-218.

Zafarani, H., Vahidifard, H. and Ansari, A., 2013- Prediction of broadband ground-motion time histories: the case of Tehran, Iran. Earthquake Spectra, 29(2): 633-660.