مطالعه کانی‎شناسی، تحولات بافتی و دما و فشار دگرگونی پسرونده طی بالاآمدگی و سردشدگی سنگ‎های گرانولیتی در شمال خاور مجموعه دگرگونی تخت سلیمان (شمال باختر ایران)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز

2 استاد، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز

چکیده

مجموعه دگرگونی تخت سلیمان در شمال خاور تکاب در استان آذربایجان غربی جای دارد. این مجموعه به سن پرکامبرین-کامبرین دارای گوناگونی بالایی از انواع سنگ‎های دگرگونی درجه ضعیف تا درجه بالاست. سنگ‎های گرانولیتی پسرونده موضوع مورد مطالعه در این پژوهش هستند. مجموعه کانی‎های دگرگونی پسرونده در گرانولیت‎های مورد مطالعه عبارتند از آمفیبول+گارنت+اسپینل+کانی‎های تیره. کانی‎های آمفیبول در مقادیر فراوان جانشین کانی‎های اولیه ارتوپیروکسن و کلینوپیروکسن شده‎اند. تشکیل اسپینل در حاشیه کلیفیت پیرامون پورفیروبلاست گارنت از بافت‎های شاخص دگرگونی پسرونده در گرانولیت‎ها هستند. روتیل به‌صورت ادخال درون آمفیبول حضور دارد. نیمرخ ترکیبی گارنت در گرانولیت‌های مورد مطالعه دارای تغییرات شیمیایی از هسته به حاشیه است. از هسته به سوی پهنه میانی تغییرات XMg افزایش جزیی دارد و تغییرات  XCaو XMn به صورت جزیی روند نزولی نشان می‌دهد. این ویژگی گارنت نشان‎دهنده رخداد کاهش فشار، همراه با افزایش بسیار جزیی دماست. به دلیل جایگزینی کامل کانی‎های دمابالا توسط کانی‎های پسرونده  و نبود مجموعه کانی‎های حفظ شده مرحله اوج دگرگونی (M1)، شرایط P-T اوج دگرگونی در گرانولیت‎ها نامشخص است. تحولات دگرگونی پسرونده در گرانولیت‌های مورد مطالعه با استفاده از ترکیب شیمی کانی‎های پورفیروبلاست طی دو مرحله: 1) مرحله کاهش فشار (M2-a) و 2) مرحله سرد شدگی و بالاآمدگی (M2-b) تعیین شد. شرایط دما و فشار دگرگونی پسرونده در مرحله M2-a به ترتیب oC10±810  T= و kbar 7/0±5/10 P~و در مرحله M2-b به ترتیبoC 10±590 T= و kbar 7P~ به دست آمد. اندازه به نسبت درشت کانی‎ها در حاشیه کلیفیت، نرخ پایین سرعت در بالاآمدگی این سنگ‎ها به سطوح بالاتر را نشان می‎دهد. جایگزینی شدید کانی‎های دما بالا توسط آمفیبول نیز سرعت پایین سرد شدگی در طی بالا آمدگی این سنگها را تأیید می‎کند. احتمالاً بتوان رخداد دگرگونی اوج و تشکیل گرانولیت‌ها را قابل مقایسه با رخدادهای میگماتیت‌زایی در منطقه به الیگوسن- میوسن نسبت داد که در ارتباط با ستبرشدگی پوسته‎ای در طی برخورد قاره‎ای خرده‎قاره ایران مرکزی با صفحه عربستان رخ داده است. عملکرد گسل‌های راندگی و فازهای کشش پس از برخورد سبب دگرگونی سنگ‎ها تحت شرایط پسرونده در ارتباط با بالاآمدگی سنگ‎ها، نازک‎‌شدگی پوسته و فرسایش آنها شده است. با این حال در زمینه رویدادهای زمین‎ساخت- دگرگونی دقیق نیاز به مطالعات بیشتری است.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy, texture and retrograde P-T evolutions of the granulites during cooling and exhumation, NE of Takht-e-Soleyman metamorphic complex (NW Iran)

نویسندگان [English]

  • R. Hajialioghli 1
  • M. Moazzen 2
1 Assosiate Professor, Earth Sciences Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2 Professor, Earth Sciences Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

The Takht-e-Soleyman metamorphic complex is located at NE of Takab town, West Azerbaijan province. This complex having Precambrian-Cambrian age has been formed from low to high metamorphic rock types. The retrograde granulites are subject of this project. The retrograde metamorphic assemblages of the granulites are including of Amp+Grt+Spl+Opaque phases. Amphibole overprinted primary mafic phases of clinopyroxene and orthopyroxene highly. Spinel at the klyphitic texture around garnet porphyroblast forms the main feature for retrograde metamorphism of granulites. Rutile occur as inclusion within amphibole. The compositional profile of garnet indicates chemical variations from the core to the rim. Compositional variations from the core to the mid is characterized with a minor increase in XMg but decrease in XCa and XMn. This characteristic of garnet is indicative of pressure decompression with small increasing of temperature. Due to complete overprinting of high temperature phases by the retrograde phases as well as lack of preserved pick metamorphic minerals it is indeterminate pick metamorphic P-T estimations for M1 stage. On the basis of chemical compositions of porphyroblasts, retrograde evolutions of investigated granulites have been estimated at two stages: (1) pressure decompression (M2-a) and (2) cooling and exhumation (M2-b). The retrograde P-T conditions are obtained as T=810±10°C at P=10.5±0.7kbar for the first and second retrograde stages, respectively. Relatively coarse grained size of phases at the klyphitic margin are indicative of low cooling rate during uplifting of rocks from lower to upper levels. Highly overprinting of high temperature phases by amphiboles support this idea. Time of pick and retrograde metamorphism for the investigated granulites are not clear accurately. It seems reasonable to attribute pick metamorphic and granulite formation time to Oligocene-Miocene related to crustal thickening due to collision between the Central Iran microcontinent and the Arabia plate. The granulites have been metamorphosed under retrograde conditions in relation with thrusting and post collisional extensions which caused to uplifting, crustal thinning and exhumation of rocks. However more conclusions on tectonometomorphic evolutions need to precise studies.

کلیدواژه‌ها [English]

  • Klyphitic margin
  • Granulites
  • P-T evolutions
  • Retrograde metamorphism
  • Takht-e-Soleyman
  • NW Iran

باباخانی، ع. و قلمقاش، ج.، 1371- نقشه زمین‎شناسی 100000/1 تخت سلیمان، سازمان زمین‎شناسی ایران.

حمدی، ب.، 1374- رسوبات پرکامبرین- کامبرین در ایران. هوشمند زاده، ع. (مؤلف) زمین‎شناسی ایران. سازمان زمین‎شناسی ایران، 20، 535 ص.

لطفی، م.، 1380- نقشه زمین‎شناسی 100000/1 ماه نشان، سازمان زمین ‎شناسی ایران.

 

References

Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005- Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation, International Journal of Earth Sciences 94: 401–419.

Alavi, M., 1994- Tectonics of the Zagros orogenic belt of Iran: New data and interpretations, Tectonophysics 229: 211–238.

Alavi, M., Hajian, J., Amidi, M. and Bolourchi, H., 1982- Geology of Takab-Shahin-Dez Quadrangle. The Ministry of Mines and Metals of Iran, Tehran, 100 p.

Beard, J. S. and Lofgren, G. E.,1991- Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kbar, Journal of Petrology 32: 365–401.

Berberian, F., King, G.C.P., 1981- Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18: 210–265 .

Bohlen, S. R., 1987- Pressure-temperature-time paths and a tectonic model for the evolution of granulite, Journal of Geology 95: 617–632.

Brown, M., 1993- PTt evolution of orogenic belts and the causes of regional metamorphism, Journalof the Geological Society of London 150: 227–241.

Carswell, D. A. and O’Brien, P. J., 1993- Thermobarometry and geotectonic sig-nificance of High Pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria, Journal of Petrology 34: 427-459.

Colombi, A., 1988- Métamorphisme et géochemie des roches mafiques des Alpes ouest-centrales (géoprofil Viège–Domodossola–Locarno), Ph.D. thesis, University of Lausanne 216 p.

Dirks, P. H. G. M. and Sithole, T. A., 1999- Eclogites in the Makuti gneisses of Zimbabwe: implications for the tectonic evolution of the Zambezi Belt in southern Africa, Journal of Metamorphic Geology 17: 593–612.

Droop, G. T. R., 1987- A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria, Mineralogical Magazine 51: 431–435.

Ellis, D. J., 1987- Origin and evolution of granulites in normal and thickened crusts, Geology 15:167-170.

England, P. C. and Thompson, A. B., 1984- Pressure-temperature-time paths of regional metamorphism.I. Heat transfer during the evolution of regions of thickened continental crust, Journal of Petrology 25: 894–928.

Gil Ibarguchi, J. I., Mendia, M. and Girardeu, J., 1991- Mg- and Cr-rich staurolite and Cr-rich kyanite in high-pressure ultramafic rocks (Cabo Ortegal, northwestern Spain), American Mineralogist 76: 501-511.

Gilg, H. A., Boni, M., Balassone, G., Allen, C. R., Banks, D. and Moore, F., 2006- Marble-hosted sulfide ores in the Angouran Zn-(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex, Mineralium Deposita 41: 1–16.

Green, D. H. and Ringwood, A. E., 1967- An experimental investigation of the gabbro to eclogite transformation and its petrological applications, Geochimica et Cosmochimica Acta 31: 767-833.

Graham, C. M. and Powell, R., 1984- A garnet–hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California, Journal of Metamorphic Geology, 3: 13-21

Guo, J. H., O’Brien P. J. and Zhai, M. G., 2002- High pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P–T paths and geotectonic significance, Jurnal of Metamorphic Geology 20: 741–756.

Harley, S. L., 1989- The origin of granulites: a metamorphic perspective, Geological Magazine 12: 215–247.

Holland, T. J. B., and Powell, R., 1998- An internally consistent thermodynamic data set for phases of petrological interest, Journal of Metamorphic Geology16: 309-343.

Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H. and Sisson, V. B., 1987- Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons, American Mineralogist 72: 231–239.

Kohn, M. J. and Spear, F. S., 1990- Two new geobarometers for garnet amphibolites, with applications to southeast Vermont, American Mineralogist 75: 89-96.

Kretz, R., 1983- Symbols of rock-forming minerals. American Mineralogist 68: 277–279.

Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. and Whittaker, E. J. W., 2004- Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature, Canadian Mineraogist41: 1355-1370.

Moazzen, M., Hajialioghli, R., Möller, A., Droop, G. T. R., Oberhänsli, R., Altenberger, U. and Jahangiri, A., 2013- Oligocene partial melting in the Takab metamorphic complex, NW Iran: Evidence from in situ U-Pb geochronology, Journal of Sciences, Islamic Republic of Iran 24: 217-228.

Münttener, O., Hermann, J. and Trommsdorff, V., 2000- CoolingHistory and exhumation of lower crustal granulite and upper mantle (Malenco, Eastern Central Alps), Journal of Petrology 41: 175-200.

Nair, R. and Chacko, T., 2000- Fluid-absent melting of two high grade amphibolites: Constraints on the conditions required for orthopyroxene formation, Geological Association of Canada – Mineralogical Association of Canada Annual Meeting, Abstracts with Program, 24, (on CD only).

Nair, R. and Chacko, T., 2002- Fluid-absent melting of high-grade semi-pelites: P-T constraints on orthopyroxene formation and implications for granulite genesis, Journal of Petrology  43 (11): 2121-2142.

Nakano, N., Osanai, Y., Owada, M., Nam, T. N., Tsunogae, T., Toyoshima, T. and Binh, P., 2004- Decompression process of mafic granulite from eclogite to granulite facies under ultrahigh-temperature condition in the Kontum massif, central Vietnam, Journal of Mineralogical and Petrological Science 99: 242-256.

O’Brien, P. J. and Rotzler, J., 2003- High-Pressure granulites: Formation, Recovery of peak conditions, and implications for tectonics, Journal of Metamorphic Geology 21: 65-80.

O’Brien, P. J., 1997a- Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: a record of their thermal history during exhumation, Lithos 41: 119–133.

O’Brien, P. J., 1997b- Granulite facies overprints of eclogites: short-lived events deduced from diffusion modeling. In: Qian, X., You, Z., Jahn, B-M., Halls, H.C. (Eds.) Precambrian Geology and Metamorphic Petrology, Proc. 30th Int'l. Geol. Congr., 17 (part II): 157-171.

O’Brien, P. J., Walte N. and Li, J. H., 2005- The petrology of two distinct Paleoproterozoic granulite types in the Hengshan Mts., North China craton, and tectonic implications, Journal of Asian Earth Science 24: 615–627.

Otten, M. T., 1984- The origin of brown hornblende in the Artfjället gabbro and dolerites, Contribution to Mineralogy and Petrology 86: 189-199.

Patino Douce, A. E. and Beard, J. S., 1995- Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar, Journal of Petrology 36, 707–738.

Powell, R. and Holland, T. J. B., 1988- An internally consistent dataset with uncertainties and correlations: Applications to geobarometry, worked examples and a computer program, Journal of Metamorphic Geology 6:173-204.

Powell, R. and Holland, T. J. B., 1994- Optimal geothermometry and geobarometry, American Mineralogist 79:120-133.

Rushmer, T., 1991- Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions, Contributions to Mineralogy and Petrology 107, 41–59.

Rushmer, T., 1993- Experimental high pressure granulites: Some applications to natural mafic xenolith suites and Archean granulite terranes, Geology 21, 411–414.

Santosh, M., Maruyama, S. and Sato, K., 2009- Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India?, Gondwana Research 16: 321–341.

Schmidt, M. W., 1992- Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblenda barometer, Contributions to Mineralogy and Petrology 110: 304-310.

Sonder, L. J., England, P. C., Wernicke, B. P. and Christiansen, R. L., 1987- A physical model for Cenozoic extension of western North America, in Continental extensional tectonics, Geological Society of London Special Publications 28: 187-201.

Spear, F. S., 1993- Metamorphic phases equilibria and pressure-temperature-time paths. Minralogical Society of America, 1: 799 p.

Stockli, D. F., Hassanzadeh, J., Stockli, L. D., Axen, G., Walker, J. D. and Dewane, T. J., 2004- Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran. Abstract, Programs Geological Society of America 36: 319.

Stocklin, J., 1968- Structural history and tectonics of Iran: a review, American Association of  Petroleum Geologists Bulletin 52: 1229–1258.

Tenthorey, E. A., Ryan, J. C. and Snow, E. A., 1996- Petrogenesis of sapphirine-bearing metatroctolites from the Buck Creek ultramafic body, southern Appalachian, Journal of Metamorphic Geology 14: 103–114.

Tracy, R. J., 1982- Compositional zoning and inclusions in metamorphic minerals. In: Ferry, J. M. (ed.) Characterization of Metamorphism through Mineral Equilibria, Reviews in Mineralogy, Mineralogical Society of America 10: 355–397.

Wolf, M. B. and Wyllie, P. J., 1991- Dehydration-melting of solid amphibolite at 10 kbar: Textural development, liquid interconnectivity and applications to the segregation of magmas, Contributions to Mineralogy and Petrology44: 151-179.

Zhang, K. J., 1999- North and South China collision along the eastern and southern north China margins reply, Tectonophysics 312: 363-Zhang, R. Y., Liou, J.G. and Ernst, W.G., 2009- The Dabie-Sulu continental collision zone: a comprehensive review, Gondwana Research 16: 1–26.

Zhang, R. Y., Liou, J. G. and Ernst, W. G., 2009- The Dabie-Sulu continental collision zone: a comprehensive review, Gondwana Research 16: 1–26.