تعیین شرایط دما و فشار کمپلکس دگرگونی ماه‌نشان، شمال باختر ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی دانشگاه شهید چمران اهواز ، ایران گروه زمین شناسی دانشگاه تبریز، تبریز، ایران

2 گروه زمین شناسی دانشگاه تبریز، تبریز، ایران

3 موئسسه تحقیقاتی علوم زمین، دانشگاه پتسدام، آلمان

چکیده

کمپلکس ماه‌نشان در شمال‌باختر ایران تحت تأثیر دگرگونی  ناحیه‌ای و همبری قرار گرفته است.  ریز ساخت‌ها،  سیماهای سنگ‌نگاری و روابط صحرایی نشان می‌دهد که کمپلکس دگرگونی ماه‌نشان،  چهار فاز دگرگونیM1  تاM4  و دست‌کم دو فاز( D1و D2) دگرشکلی را تجربه کرده است. دگرگونی فازM1  تحت تأثیر دگرگونی فاز  M2 قرار گرفته است. دگرگونی مرحله دوم به‌وسیله جهت‌گیری ترجیهی کانی‌ها  (تشکیل شیستوارگی (S2 و توسعه مجموعه کانی‌های اوج دگرگونی مشخص  می شود. این فاز دگرگونی، همزمان با فاز دگرشکلی D2 بوده است.  دگرگونی فاز سوم  (M3)یک دگرگونی همبری و دگرگونی((M4 به صورت دگرگونی پس‌رونده است.  مجموعه کانی‌های اوج دگرگونی M2 عبارت است از مسکوویت، بیوتیت، گارنت، استارولیت،  آندالوزیت و سیلیمانیت. فشار و دمای دگرگونی کمپلکس ماه‌نشان به منظور تعیین گرادیان زمین‌گرمایی پوسته و نوع دگرگونی با استفاده از روش‌های تعادل‌های فازی چندگانه، دماسنج‌های تبادل کاتیونی و واکنش‌های انتقالی محض، مشخص شده است. دما و فشار دگرگونی M1 به ترتیب  420تا 450 درجه سانتی‌گراد و 3 تا 4 کیلوبار است. دگرگونی M2 (اوج دگرگونی) دمای 600 تا 620 درجه سانتی‌گراد و فشار 5 تا 7 کیلوبار را نشان می‌دهد. همچنین دما و فشار برای دگرگونی M3 (دگرگونی همبــــــری) به ترتیب520  تا 560  درجه و2 تا 5/3 کیـــــلوبار است. گرادیان گرمایی محاسبه شــــــــده برای اوج دگرگونی ° C km-15/28-25 است که  با دگرگونی نوع  بارووین سازگاری دارد. جایگاه زمین‌ساختی دگرگونی مرتبط با پوسته قاره‌ای وکمان است.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of P-T Conditions of Metamorphism of Mahneshan Complex NW Iran

نویسندگان [English]

  • A. Saki 1
  • M. Moazzen 2
  • M. Modjtahedi 2
  • R. Oberhänsli 3
1 Depatrmant of Geology, Shahid Chamran University, Ahvaz, Iran Depatrmant of Geology, University of Tabriz, Tabriz, Iran
2 Depatrmant of Geology, University of Tabriz, Tabriz, Iran
3 Institut fur Geowissenschaften, Universität of Potsdam, Germany.
چکیده [English]

    Mahneshan Complex in the northwest of Iran was affected by regional and contact metamorphism. Microstructural and petrographical features as well as field relations show that Mahneshan Metamorphic Complex has been affected by four episodes of metamorphism (M1 to M4) and at least two deformational phases (D1 and D2). The M2 metamorphic stage is characterized by a strong preferential orientation of minerals (S2) and development of a peak metamorphic assemblage. This metamorphismis temporally associated with D2 deformational phase. The M3 metamorphism was contact metamorphism and M4 metamorphism is retrograde. The mineral assemblages of peak metamorphism M2 are muscovite, biotite, garnet, staurolite, andalusite and sillimanite.  Pressure and temperature of metamorphism in the Mahneshan Complex were estimated by multiple equilibria calculations, cation exchange reaction thermometry and net transfer reaction in order to determine the geothermal gradients and type of metamorphism. The temperature of M1 metamorphism is estimated 420-450ºC and pressure of 3-4 kbar. M2 (peak metamorphism) temperature is 600-620ºC and pressure of 5-7 kbar. The temperature of M3 metamorphism is 520-560 ºC and pressure of 2.-3.5 kbar. The Geothermal gradients for the peak of metamorphism show high value for the upper crust (33° C/ km) indicating a Barrovian type of metamorphism for the study area. Tectonic setting of metamorphism is related to continental crust and magmatic arc.

کلیدواژه‌ها [English]

  • Geothermobarometer
  • Mahneshan Complex
  • Geothermal gradient
  • Cation exchange reactions
  • Metapelites

References

Alavi, M. & Amidi, M., 1968- Geology of western part of Takab Quadrangle, Geologic Survey of Iran. Note No.49 (with map) (unpublished).

Alavi, M., 1991- Tectonic map of the Middle East: Geologic Survey of Iran, scale 1:5,000,000.

Barker, A.J. ,1990- Introduction to metamorphic textures and microstructures. Blackie USA, Chapman and Hall, New York.

Berberian, M.,1981- Active faulting and tectonics of Iran, in Gupta, H. K., and Delany, F. M., editors, Zagros-Hindu Kush-Himalaya Geodynamic Evolution: American Geophysical Union Geodynamic Series, v. 3 , p. 33-69.

Berman, R. G. & Aranovich, L. Y., 1996- Optimized standard state and solution properties of minerals I. Model calibration for olivine, orthopyroxene, cordiete, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contribution to Mineralogy and Petrology, 126, 1-24.

Bhattacharya, A., Mohanty, L., Maji, A., San, .S.K., Raith, M.,1992- Non-ideal mixing in the phlogopite-annite binary system: Constraint from experimental data on Mg- Fe partitioning and a reformalation of the biotite-garnet geothermometer. Contrib. Min. Pet. 111;87-93.

Bucher, K. & Frey, M., 1994- Petrogenesis of metamorphic rocks. Springer Verlag 318 p.

Cathlineau, M., 1988- Cation site occupancy in chlorite and illite as a function of temperature. Clay Mineral. vol.23,pp:471-485.

Dempster, T.J. & Tanner, P.W.G., 1997- The biotite isograd, Central Pyrenees: a deformation-controlled reaction. Journal of Metamorphisc Geology,15, 531-584.

Ferry, J.M., Spear, F.S., 1978- Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113-117.

Ganguly, J., 1996- Chloritoid stability and related parageneses: theory experiments and applications. American Journal of Science 267, 910-944.

Ghent & Mavis, z.Stout, 1981- Geobarometry and Geothermometry of plagioclase-biotite-garnet-muscovite assemblages, Contrib Mineral Petrol 76;92-97.

Graebner, T. & Schenk, V., 1999- Low-pressure metamorphism of Palaeozoic pelites in the Aspromonte, Southern Calabria: constraints for the thermal evolution in the Calabrian crustal cross-section during the Hercynian orogeny, J. metamorphic Geol.,1999, 17, 157-172.

Helffrich, G. & Wood, B., 1989- Subregular model for multicomponent solutions. Am Mineral 74: 1016-1022

Holland. T.J.B. & Powell, R., 1998- An internally consistent thermodynamic data set for phases of petrological intrest, Journal of.Metamorphic. Geology ., 16, (1998) 309-343.

Holland, T. J. B. & Powell, R., 1985- An internally consistent thermodynamic dataset with uncertainties and correlation: 2: Data and results. Journal of metamorphic Geology:3,343-370

Koziol, A.M., Newton, R.C., 1988- Redetermination of the anorthite breakdown reaction and improvement of the Pl-Grt-Als-Qtz geobarometer. Am Mineral 73: 216-223.

Kleeman, U. & Reinhardt, J., 1994- Garnet – biotite thermometry revisited: the effect of Al VI and Ti in biotite. Eur J Mineral 6:925-941.

Kretz, R., 1983- Symbols for rock forming minerals.  American Mineralogist, 68(1983) 277- 279.

Lambert, R. St. J., 1959- The mineralogy and metamorphism of the Moine schists of the Morar and Kroydart districts of Inverness-shire. Transactions of the Royal Society of  Edinburgh,63, 553.

Laird, J., 1988- Chlorites: metamorphic petrology. In: Hydrous phyllosilicates (ed Bailey, S. W.), Reviews in Mineralogy, 19, 405-453, Mineralogical Society of America.

Mather, J.D., 1970- The biotite isograde and the lower greenschist facies in the Dalradian rocks of Scotland. Journal of Petrology, 11, 253-275.

O berin, P.J., 2005-  Metamorphic Rocks/ PTt-Paths, Elsevier Ltd, Universität Potsdam, 409-417.

Patino-Douce, A. E. , Johnston, A. D., Rice, J. M.,1993- Octahedral excess mixing properties in biotite: a working model with application to geobarometry and geothermometry. American Mineralogist 78 ( 1993)113-131.

Passchier, C. W. & Trouw, R.A j., 1996- “Microtectonics” Springer-Verlag Heidelberg NewYork, 289 p.

Pelissier, G. &  Bolourchi, M.H., 1967- East Takab metamorphic complex (unpublished).

Robinson, P. R., Hollocher, K. T., Tracy, R.J. & Dietsch, C.W., 1982- High grade Acadian regional metamorphism in south-central Massachusetts. In: NEIGC 74th Annual Meeting of the state Geological and Natural History Survey of Connecticut, guidebook for fieldtrips in Connecticut and South-Central Massachusetts (eds Joester, R.A & Quarrier, S.S. ), 289-340, The Univercity of Connecticut, Storrs.

Saad, N.A, Bouseily & Kalil, K., 1996- Alteration pattern in the  Rugs gold mine area,Egypt, Acta Mineral. Petrography. XXXVII,5/-74.

 Seifert, F.,1978- Bedeutung and Nachweis von thermodynamischem Gleichgewicht und die interpretation von Ungleichgewichten. Fortschr Mineral 55: 111-134.

Spear, F.S., Peacock, S. M.,1989- Metamorphic pressure-temperature-time paths. Am Geophys Union, Short Course in Geology 7 , 102 p.

 Spear, F.S., 1993- Metamorphic phase equilibria and pressure-temperature time paths. Mineralogical Society of America. Monograph. 799p.

Thompson, A..B., 1976- Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. American Journal of Science, 276: 401-454.

Wang, G.F., Banno, S. & Takeuchi, K., 1986- Reactions to define the biotite isograde in the Ryoke metamorphic belt, Kii Peninsula, Japan. Contributions to Mineralogy and Petrology, 93, 9-17.

Will, T..M., 1995- Phase Equilibria in Metamorphic Rocks, Thermodynamic Backgrounds and Petrological Applications350p.