نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

2 عضو هیات علمی

3 دانشیار، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

چکیده

چکیده

منطقۀ فرومد در شمال غرب شهرستان سبزوار و در حاشیۀ شمال شرقی ایران مرکزی و در غربی‌ترین بخش مجموعه افیولیتی سبزوار واقع است. بخش گوشته‌ای افیولیت فرومد عمدتاً شامل هارزبورژیت‌ها، دونیت‌ها، دایک‌های پیروکسنیتی و لنزهای کرومیتیتی هستند که واجد اسپینل‌های قهوه‌ای تا سیاه رنگ می‌باشند. مقدار اکسید‌های Cr2O3 و Al2O3 موجود در کروم‌اسپینل هارزبورژیت‌ها به ترتیب بین 6/32 تا 1/53 و 6/15 تا 8/34 درصد وزنی و مقدار عدد کروم (Cr#) آنها بین 39 تا 69 درصد متغیر است. ارتباط بین عدد کروم (Cr#) اسپینل و میزان فورستریت (Fo) اولیوین‌های همزیست (درصد فورستریت بین 91 تا 92) و همچنین مقادیر پایین اکسید تیتان (کمتر از 06/0 درصد وزنی) هارزبورژیت‌ها نشان می-دهند که هارزبورژیت‌ها از روند آرایه‌ی گوشته اولیوین–اسپینل (OSMA) تبعیت کرده و در محدودۀ مشترک بین پریدوتیت‌های جلو قوس و آبیسال پلات می‌شوند و حاصل باقیمانده‌های درجات متوسط ذوب بخشی (حدود 15 تا 26 درصد) از یک گوشته نسبتاً تهی‌شده هستند. اما، میزان عدد کروم کروم‌اسپینل‌های موجود در دونیت‌ها، کرومیتیتت‌ها و پیروکسنیت‌ها، بالا و بین 81 تا 85 درصد بوده و وابسته به مذاب‌های بونینیتی می‌باشند و نشاندهنده آن هستند که از درجه ذوب بخشی بالای یک منشأ گوشته‌ای تهی شده، تحت شرایط آبدار مشتق شده‌اند. در نتیجه، شیمی کانی‌های کروم‌اسپینل سنگ‌های بخش گوشته‌ای افیولیت فرومد، حاکی از آن است که ژنز این مجموعه سنگی در یک محیط سوپراسابداکشن تکامل یافته و حاصل از فرورانش رو به شمال دریا/اقیانوس سبزوار در پاسخ به همگرایی بین پلیت‌های خرد قاره شرق ایران مرکزی و البرز (توران) گسترش یافته است.

کلیدواژه‌ها

کتابنگاری
بهرودی، ا. و عمرانی، ج.، 1380- گزارش زمین­شناسی ورقه 1:100000 فرومد. سازمان زمین­شناسی و اکتشافات معدنی کشور.
حیدری، م.، 1394- ژئوشیمی و پتروژنز سکانس گوشته­ای افیولیت منطقه فرومد (شمال باختر سبزوار)، پایان‌نامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه دامغان، ص. 141.
زندی، ز.، مهرابی، ب. و مسعودی، ف.، 1385- ژئوشیمی و ژنز کانسارهای کرومیت پدیفرم فرومد سبزوار. بیست و پنجمین گردهمایی علوم زمین، تهران وزارت صنایع و معادن، سازمان زمین­شناسی و اکتشافات معدنی کشور.
کهنسال، ر.، قربانی، م.، پورمعافی، س. م.،  خلعتبری جعفری، م.، عمرانی، ج.، ذوالفقاری، ص. و سلیمانی، س.، 1394- زمین شناسی و ژئوشیمی توالی خروجی افیولیتی در ناحیه فرومد، شمال خاوری ایران. فصلنامه علوم زمین، شماره 97، صص. 387 تا 396.
وطن‌پور، ح. ر.، 1386- کانی­شناسی، ژئوشیمی و ساختار کانسارهای کرومیت در افیولیت‎های شمال باختر سبزوار و ارائه مدل اکتشافی آنها، دانشگاه شهید بهشتی، 298 ص.
 
References
Ahmed A.H. and Arai S., 2002- Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib. Miner. Petr., 143, 263- 278.
Arai, S. and Yurimoto H., 1994- Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Geology, 89, 1279- 1288.
Arai, S., 1987- An estimation of the least depleted spinel peridotite on the basis of olivine-spinel mantle array. Neues Jahrbuch fur Mineralogie Monatshefte 8, 347- 354.
Arai, S., 1992- Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173- 184.
Arai, S., 1994- Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem. Geol. 113, 191- 204.
Arai, S., 1997- Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol. 47, 177- 187.
Arai, S., Kadoshima, K. and Morishita, T., 2006- Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. Journal of the Geological Society 163, 869- 879.
Arai, S., Okamura, H., Kadoshima, K., Tanaka, C., Suzuki, S. and Ishimura, S., 2011- Chemical characteristics of chromian spinel in plutonic rocks: implications to deep magma processes and discrimination of tectonic setting. Island Arc 20, 125- 137.
Berberian, M. and King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of Iran." Canadian Journal of Earth Science, 18, 210-265.
Bonatti, E. and Michael, P. J., 1989- Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters. 91, 297- 311.
Choi, S. H., Shervais, J. W. and Mukasa, S. B., 2008- Supra-subduction and abyssal peridotites of the Coast Range ophiolite, California. Contrib Mineral Petrol , 156:551- 576.
Conrad, W. K. and Kay, R. W., 1984- Ultramafic and mafic inclusions from Adak Island: crystallisation history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. Journal of Petrology 25, 88- 125.
Dick, H. J. B. and Bullen, T., 1984- Chromian spinel as a petrogenetic indicator in abyssal and alpine – type peridotites and spatially associated lavas. Contribution to Mineralogy and Petrology, 86, 54-76.
Dilek, Y. and Furnes, H., 2011- Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123, 387- 411.
Hawkins, J. W., 2003- Geology of supra-subduction zones- Implications for the origin of ophiolites in Dilek, Y., and Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought: Geological Society of America Special Paper 373, pp. 227-268.
Hebert, R., Adamson, A. C. and Komor, S. C., 1990- Metamorphic petrology of ODP 109, Hole 670A serpentinized peridotites: serpentinization processes at a slow spreading ridge environment. In: Detrick, R., Honnorez, J., Bryan, W.B., Juteau, T. (Eds.), Proceedings of the ODP, Sci. Results 106/109. College Station, Texas, pp. 103- 115.
Hellebrand, E., Snow, J. E., Dick, H. J. B. and Hofmann, A. W., 2001- Coupled major and trace elements as indicaators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410, 677- 681.
Irvine, T. N., 1967- Chromian spinel as a petrogenetic indicator. Part I- Petrogenetic applications. Canadian Journal of Earth Sciences 4, 71-103.
Ishii, T., Robinson, P. T., Maekawa, H. and Fiske, R., 1992- Petrological studiesof peridotites from diapiric serpentinite seamounts in the Izu-Ogazawara-Mariana forearc, Leg 125, In: Fryer, P., Pearce, J.A., Stokking, L.B., et al., (Eds.), Proceeding of the Ocean Drilling Program, Scientific Results 125, College Station, Texas, pp.445- 485.
Ishiwatari, A., Sokolov, S. D. and Vysotskiy, S. V., 2003- Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. In: Dilex, Y., Robinson, P.T. (Eds.), Ophiolites in Earth History, vol. 218, Spec. Publ. Geol. Soc., London, pp. 597- 617.
Jean, M. M., Shervais, J. W., Choi, S. H. and Mukasa, S. B., 2010- Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: An La-ICP-MS study. Contributions to Mineralogy and Petrology 159, 113- 136.
Johnson, K. T. M. and Dick, H. J. B., 1990- Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research Atmospheres, 95, 2661- 2678.
Kamenetsky, V., Crawford, A. J., Meffre, S., 2001- Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655- 671.
Karipi, S., Tsikouras, B., Hatzipanagiotou, K. and Grammatikopoulos, T. A., 2007- Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos, 99, 136- 149.
Kepezhinskas, P. K., Defant, M. J. and Drummond, M. S., 1995- Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology 36, 1505- 1527.

Khedr, M. Z. and Arai, S., 2017- Peridotite-chromitite complexes in the Eastern Desert of Egypt: Insight into Neoproterozoic sub-arc mantle   processes. Gondwana Research, 52, 59- 72.

Li, X. P., Chen, H. K., Wang, Z. L., Wang, L. J., Yang, J. S., Robinson, P., 2015- Spinel peridotite, olivine websterite and the textural evolution of the Purang ophiolite complex, western Tibet. Journal of Asian Earth Sciences, 110, 55- 71.
Maural, C. and Maural, P., 1982- Etude experimental de la distribution de aluminiium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: teneur en chrome des spinelles. Bulletin de Mineralogie 105: 197- 202.
Merlini, A., Grieco, M., Ottolini, L., Diella, V., 2011- Probe and SIMS investigation of clinopyroxene inclusions in chromites from the Troodos chromitites (Cyprus): implications for dunite–chromitite genesis. Ore Geology Reviews 41, 22- 34.
Miura, M., Arai, S., Ahmed, A. H., Mizukami, T., Okuno, M. and Yamamoto, S., 2012- Podiform chromitite classification revisited: a comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. Journal of Asian Earth Sciences 59, 52- 61.
Moores, E. M., Robinson, P. T., Malpas, J., Xenophontos, C., 1984- Model for origin of the Troodos massif, Cyprus, and other Mideast ophiolites geology, 12, pp.500- 503.
Nicolas, A., 1989- Structures of Ophiolites and Dynamics of Oceanic Lithosphere. : Series in Petrology and Structural Geology, vol. 4. Kluwer Academic Publishing, Dordrecht, p. 367.
Niu, Y. and Hekinian, R., 1997- Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast spreading ridges. Earth and Planetary Scince Letters, 146, 243- 258.
Parkinson, I. J. and Pearce, J. A., 1998- Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-       mantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577- 1618.
Pearce, J. A. and Robinson, P. T., 2010- The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting: Gondwana Research, v. 18, p. 60.
Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J. and Leat, P. T., 2000- Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36- 53.
Pearce, J. A., Lippard, S. J. and Roberts, S., 1984- Characteristics and tectonic significance of suprasubduction zone ophiolites. In: Kokelaar, B.P., Howells M. F. (ed), Marginal Basin Geology. Geological Society, London, Special Publications, 16, pp.77- 89.
Reagan, M. K., Ishizuka, O., Stern, R. J., Kelley, K. A., Ohara, Y., Blichert-Toft, J., Bloomer, Sh. H., Cash, J., Fryer, P., Hanan, B. B., Hickey-Vargas, R., Ishii, T., Kimura, J., Peate, D. W., Rowe, M. C. and Woods, M., 2010- Fore-arc basalts and subduction initiation in the Izu-Bonin Mariana system: Geochemistry Geophysics Geosystems, v11.
Rollinson, H. and Adetunji, J., 2013- Mantle podiform chromitites do not form beneath mid ocean ridges: a case study from the Moho transition zone of the Oman ophiolite. Lithos 177, 314- 327.
Shafaii Moghadam, H., Zaki Khedr, M., Arai, S., Stern, R. J., Ghorbani, G., Tamura, A. and Ottley, C., 2013- Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: a model for formation of podiform chromitites. Gondwana Research, 
Shirzadi A., Masoudi F. and Rahimzadeh B., 2013- Nature of Chromite parent magma In Sabzevar ophiolite (North-East of Iran). Journal of Crystallography and MineralogyVol. 21, No. 3, pp. 49-58.
Shojaat, B., Hassanipak, A. A., Mobasher, K. and Ghazi, A. M., 2003- Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. Journal of Asian Earth Sciences. 21, 1053- 1067.
Stocklin, J. and Nabavi, M. H., 1974- Tectonic map of Iran,Geo. Sur.Iran.
Tamura, A. and Arai, S., 2006- Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90, 43–56.
Taylor, R. N., Nesbitt, R. W., Vidal, P., Harmon, R. S., Auvray, B. and Croudace. I. W., 1994- Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, Vol: 35, 577- 617.
Uysal, I., Zaccarini, F., Sadilkar, M. B., Tarkian, M., Thalhammer, O. A. R. and Garuti. G., 2009- The podiform chromitites in the Dagkuplu and Kavak mines, Eskisehir ophiolite (NW-Turkey): Genetic implications of mineralogical and geochemical data. Geologica Acta, Vol: 7, p: 351-362.
Xiong, F., Yang, J., Robinson, P. T., Xu, X., Liu, Z. and Li, Y., 2015- Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27, 525- 542.
Zhou, M. F. and Robinson, P. T., 1994- High-Cr and High-Al chromitites western China: relationship to partial melting and melt/rock interaction in the upper mantle, International Geological Reviews 36 ,678- 686.
Zhou, M. F. and Robinson, P. T., 1997- Origin and tectonic environment of podiform chromite deposits. Economic Geology 92, 259-262.
Zhou, M. F., Robinson, P. T., Malpas, J. and Edwards, S. J., 2005- REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology 46, 615- 639.
Zhou, M. F., Robinson, P. T., Malpas, J., Aitchison, J., Sun, M., Bai, W. J., Hu, X. F. and Yang, J. S., 2001- Melt–mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). Journal of Asian Earth Sciences 19, 517- 534.