پیش بینی نوسانات سطح آب زیرزمینی در آبخوان باروق با استفاده از مدل SOM-AI

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده علوم، دانشگاه ارومیه،ارومیه

2 دانشکده علوم ،دانشگاه ارومیه،ارومیه

3 دانشکده علوم طبیعی،دانشگاه تبریز،تبریز

4 دانشکده علوم طبیعی،دانشگاه تبریز،تبریز،

چکیده

قسمت اعظم مساحت کشور از لحاظ جغرافیایی در کمربند خشک و نیمه‌ خشک با بارندگی کم قرار گرفته است. رشد روز افزون جمعیت و محدودیت منابع آبی و استفاده بیش از قبل از منابع آب زیرزمینی در بیشتر نقاط کشور، پیش بینی دقیق مقدار این منابع را به دلیل اهمیت در برنامه ریزی و مدیریت بهینه می‌طلبد. در این تحقیق به منظورتخمین نوسانات سطح آب زیرزمینی آبخوان باروق در استان آذربایجان غربی و محدوده مطالعاتی میاندوآب از مدل-های هوش مصنوعی شامل مدل فازی و مدل ماشین بردار پشتیبان و شبکه عصبی مصنوعی برگشتی با به کارگیری داده‌های سطح آب زیرزمینی 7 پیزومتر انتخابی و همچنین تغییرات دما و بارش طی دوره زمانی 14 ساله(81-94) استفاده گردیده است. با وجود توانایی‌های ذاتی هر یک از این مدلهای هوش مصنوعی در پیش‌بینی سطح
آب زیرزمینی، ناهمگنی فراوان محدوده مطالعاتی از حصول بازده بالای مدل‌ها می‌کاهد. لذا مدل‌سازی SOM-AI که ترکیب روش دسته بندی نقشه خودسازمانده و مدلهای اجرا شده است، با تقسیم بندی منطقه مطالعاتی به مناطق همگن باعث افزایش بازده هر یک از مدل‌های مرکب در قسمتهای مختلف آبخوان گردید. نتایج نشان داد که روش ارائه شده می‌تواند روشی کارا در مدل‌سازی آبخوان‌های ناهمگن و حتی چند لایه باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting of groundwater level fluctuations in Baruq aquifer using the SOM-AI model

نویسندگان [English]

  • Yaser Bageri 1
  • Esfandiar Abbas Novinpour 2
  • A Nadiri 3
  • Keiwan Naderi 4
1 Faculty of Science, Urmia University, Urmia
2 Faculty of Science, Urmia University, Urmia
3 Faculty of Natural Sciences, Tabriz University, Tabriz
4 Faculty of Natural Sciences, Tabriz University, Tabriz
چکیده [English]

Most of the country's geographically area is located in dry and semi-dry zone with low rainfall. The growing population, the limitation of water resources and the prevalence of groundwater resources in most parts of the country requirement to accurate prediction of the amount of these resources due to the importance of these resources in optimal planning and management. In this research, in order to estimate the fluctuations of groundwater level in the Baruq aquifer, the artificial intelligence models including fuzzy, support vector machine and neural network models were used by the data of depth from 7 piezometers with long-term data of 14 years, as well as changes in temperature and precipitation in this period. Despite the inherent abilities of each models in predicting groundwater level, the heterogeneity of the study area prevented the high efficiency of these models. Therefore, SOM-AI modeling combined the self-organized maps (SOM) classification method and each model that is increased the efficiency of each composite model in different parts of the aquifer by dividing the study area into homogeneous regions. The results showed that the proposed method can be an effective method in the modeling of heterogeneous and even multi-layered aquifers.

کلیدواژه‌ها [English]

  • Baruq Aquifer
  • groundwater level
  • Neural Network
  • Support Vector Machine
  • Sageno Fuzzy

کتابنگاری

اصغری‎مقدم، ا.، ندیری، ع. و فیجانی، ا.، 1388- پیش­بینی مکانی غلظت فلوئورید با استفاده از مدل­های شبکه­های عصبی و زمین­آمار، مجله دانش آب و خاک، 2 (19)، صص. 129 تا 145.

اعلمی، م.، صادق‎فام، س.، فاضلی‎فرد، م. و نقی‎پور، ل.، 1392- مدل­سازی سری داده­ها، انتشارات دانشگاه تبریز، تبریز، 299 ص.

حبیبی، م. ح.، 1393- پیش‎بینی سطح آب زیرزمینی در دشت هادیشهر با استفاده از روش‌های هوش مصنوعی، پایان‎نامه کارشناسی ارشد، دانشکده علوم طبیعی، دانشگاه تبریز، 152ص .

داداش‎بابا، م.، ندیری، ع.، اصغری‌مقدم، ا. و برزگری، ق.، 1396- ارائه روش جدید ترکیبی SOM-GEP برای پیش بینی هدایت هیدرولیکی محدوده متروی شهر تبریز، مجله اکوهیدرولوژی، 1(4)، صص 75 تا 87 .

مصطفی‌زاده، ر.، مهری، س.، اسمعیلی عوری، ا. و قربانی، ا.، 1395- گروهبندی آبخیز‌ها بر اساس خصوصیات فیزیکی و دبی پایه جریان رودخانه با رو‌شهای مختلف خوشه‌بندی در استان اردبیل، ترویج و توسعه آبخیزداری، 4( 15)، صص. 31 تا 40.

نادری، ک.، 1393- پیش‌بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش‌های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان)، پایان‎نامه کارشناسی ارشد، دانشکده علوم طبیعی، دانشگاه تبریز، 134ص.

ندیری، ع.، 1386- پیش‎بینی سطح آبهای زیرزمینی با استفاده از مدلهای شبکه عصبی مصنوعی در محدوده مترو شهر تبریز، پایان‌نامه کارشناسی ارشد، دانشکده علوم طبیعی، دانشگاه تبریز، 178ص.

ندیری، ع.، اصغری‎مقدم، ا.، قعبقری، ه.، کلانتری اسکویی، ع.، حسین‎پور، ع. و حبیب‎زاده، و.، 1393- منطق فازی در تخمین انتقال آبخوان‌ها (مطالعه موردی :دشت تسوج)، نشریه آب و خاک، 1(24)، صص. 209 تا  223.

ودیعتی، م.، اصغری‏مقدم، ا.، نخعی و م.، 1396- تبیین تحولات رخساره‌های هیدروشیمیایی آبخوان سراب با استفاده از روش‌های خوشه بندی میانگین فازی و تحلیل خوشه سلسله مراتبی، مجله اکوهیدرولوژی، 4 (3)، صص. 763 تا 773 .

 

References

Alvisi, S., Mascellani, G., Franchini, M. and Bradossy, A., 2006- Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrology and earth system scince, 10:1- 17.

Ansari Mahabadi, S., Shamsai, A. and Massah Bavani, A., 2011- Ground water level modeling in Sefiddasht by GMS  model Second National Conference on Applied Research in Water Resources, Zanjan, Iran.

Asadi, P., Hosseini, H., Ataie-Ashtiani, B. and Simmons, C., 2017- Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination. Environmental Modelling and Software, 96: 146- 157.

ASCE )Task Committee on Application of Artificial Neural Networks in Hydrology(, 2000- Artificial neural network in hydrology, part I and II. J. Hydrol. Eng. 5(2): 115- 137.

Baghapour, M. A., Nobandegani, A. F., Talebbeydokhti, N., Bagherzadeh, S., Nadiri, A. A., Gharekhani, M. and Chitsazan. N., 2016- Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Journal of Environmental Health Science and Engineering 14 (1), 13.

Cho, K. H., Sthiannopkao, S., Pachepsky, Y. A. and Kim, K. W., 2011- Prediction of contamination potential of groundwater arsenic in ambodia, Laos, and Thailand using artificial neural network. Water Research, 45: 5535- 5544.

Calvo, P. I. and Estrada, G. J. C., 2009- Improwed irrigation water demand forecasting using a softcomputing hybrid model, Biosystems Engineering 102(2): 202- 218

Coppola, E. A., McLane, C, F., Pouton, M. M., Szidarovszky, F. and Magelky, R. D., 2005- Predicting Conductance Due to Upconing Using Neural Networks.Ground Water, 6: 827- 836.

Coppola, E., Szidarovszky, F., Poulton, M. and Charles, E., 2003- Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State, Pumping, and Climate Conditions. Journal of Hydrologic Engineering, 6: 348- 360.

Cortes, C. and Vapnik, V., 1995- Support-vector networks. Machine learning, 20: 3, pp. 273- 297.

Cristianini, N. and Shawe-Taylor, J., 2000- An Introduction to Support Vector Machines. Cambridge University Press, New York, USA.

Dibike, Y. B., Velickov, S., Solomatine, D. and Abbot, M. B., 2001- ModelInduction with Support Vector Machines-Introduction and Applications. Jounnal of Computing Civil Engineering, 15(3):208- 216.

Hamed, Y., Elkiki, M. and Al Gahtani, O. S., 2015- Prediction of future groundwater level using artificial neural network, Southern Riyadth, KSA(case study). International Warter Technology Journal, 5(2): 149- 169.

Hopfield, J. J., 1982- Neural network and physical ayatems with emergent collective computational abilities. Proc. Nat. Academy of Scientists, 79: 2554- 2558.

Jalalkamali, A., Sedghi, H. and manshouri, M., 2011- Monthly ground water level prediction using ANN and neuro-fuzzy models, a case study on Kerman plain. Iran, Journal of Hydroinformatics, 13(4): 867- 876.

Karthikeyan, L., Kumar, N. D., Graillot, D. and Gaur, S., 2013, Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks, Water Resour Manage, 27, pp. 871- 883.

Kisi, O., 2013- Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration. Journal of Hydrology, 504: 160- 170.

Kohonen, T., 1997- Self-organizing maps, Springer, Berlin.

Mair, H. R. and Dandy, G. C., 1996- The use of artificial neural network for the prediction of water quality parametrs. Water resour Research, 32(4): 1013- 1022.

Mirzavand, M., Khoshnevisian, B., Shamshirband, S., Kisi, O., R. and Akib, S., 2015- Evaluvating groundwater level fluctuation by support vector regression and neuro-fuzzy methods. a comparative study. Nat Hazards, Published online:  1007 (10): 11069-015-1602-4..

Naderifar, M., Piri, J. and Kisi, O., 2017- Pre-processing data to predict groundwater levels using the fuzzy standardized evapotranspiration and precipitation index (SEPI). Water Resources Management, 31(14): pp 4433- 4448.

Nadiri, A. A., 2015- Application of Artificial Intelligence methods in Geosciences and Hydrology. OMICS Publication. 124p.

Nadiri, A. A., Chitsazan, N., Frank T. C., Tsai, M. and Asghari Moghaddam, A., 2014- Bayesian Artificial Intelligence Model Averaging for Hydraulic Conductivity Estimation. Journal of Hydrologic Engineering, 19:520- 532.

Nadiri, A. A., Fijani, E., Tsai, F. T.C. and Asghari Moghaddam, A. A., 2013- Supervised Committee Machine with Artificial Intelligence for prediction of Fluoride Concentration . Hydroinfirmatics Journal, 15(4): 1474- 1490.

Nadiri, A. A., Hassan, M. M. and Asadi, S., 2015- Supervised intelligence committee machine to evaluate field performance of photocatalytic asphalt pavement for ambient air purification. Transportation Research Record: TRB 2528, 96-105.

Nadiri, A. A., Sadeghfam, Sina, Gharekhani , M., Khatibi, R. and Akbari, E., 2018- Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using ‘risk cells’. Journal of Environmental Management 217, 654–667.

Nasr, M. and Zahran, H. F., 2014- Using of ph as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network.egypation Journal of Aquatic Research,40: 111- 115.

Nourani, V., Asgharimoghaddam, A. A. Nadiri A. O. and Singh, V. P., 2008- Forecasting spatiotemporal water levels of Tabriz aquifer. Trends in Applied Sciences Research 3 (4), 319- 329.

Nourani, V., Taghi Alami, M. and Daneshvar Vousoughi, F., 2016- Hybrid of SOM-Clustering Method and Wavelet-ANFIS Approach to Model and Infill Missing Groundwater Level Data.Journal of Hydrologic Engineering, 21(9), 05016018.

Park, Y., Ligaray, M., Kim, Y. M., Kim, J. H., Cho, K. H. and Sthiannopkao, S., 2015- Developmant of enhanced groundwater arsenic prediction model using machine lerning approaches Asian countries. Desalination and water Treatment 1080(10): 1- 10 .

Raghavendra, S. and Chandra, D. P., 2014- support vector machine applications in the field of hydrology. A review Elsevier , applied soft computing, 19:372- 386.

Raj, R. J. R., Sasipraba, T., Vasudev, M., Gupta, S., Rizwan, Md. and Srivastava, P., 2016- Predicting the Impact of Climate Change on Tidal Zone Fishes Using SVM Approach. Procedia Computer Science, 92:237- 243.

Seifi, A., 2010- Developing of expert system to prediction of daily evapotranspiration by support vector machine and compare result to ANN, ANFIS and experimental method.M.Sc. Thesis, Departemant of Water Engineering, Tarbiat modares University, Tehran, Iran

Srinivas, R., Bhakar, P. and Singh, A. P., 2015- Groundwater quality assessment in some selected area of Rajasthan, India using fuzzy multi-criteria decision making tool. Aquatic Procedia, 4:1023- 1030.

Suryanarayana, Ch., Sudheer, C. H., Mahammood, V. and Panigrahi, B. K., 2014- An integrated wavelet-support vector machne for groundwater level prediction in Visakhaptnam, India. Neurocomputing, 145: 324- 335.

Suyknese, G., Van, G., Brabanter, J., De, M. and Vandewalle, J., 2002- Least Squares Support Vector Machine, .World Scintific Pblishing, Singapore.

Tayfur, G., Nadiri, A. A. and Moghaddam, A. A., 2014- supervised intelligent committee machine method for hydraulic conductivity estimation. water resouces management, 28: 1173- 1184.

Umamaheswari, G. R. and Kalamani, D., 2014- Adaptive Neuro Fuzzy inference for monthly groundwater level prediction in Amaravathi river minor basin. Journal of Theoretical and Applied Information Technology, 68 (3): 523- 530.

Vadiati, M., Asghari Moghaddam, A., Nakhaei, M. and Adamowski, J., 2016- A fuzzy- logic based dicision-making Approach for identification of ground water quality indices. Journal of Environmental Management, 184 (Pt 2): 255- 270.

Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O. and Lee, K. K., 2011- A comparative study of artificial neural network and support vector machine for prediction ground water level in a coastal aquifer. Journal of hydrology, 396: 128- 138.

Zadeh, L. A., 1965- Fuzzy sets, Information and Control, 8 (3): 338- 353.

Zhou, T., Wang, F. and Yang, Zhi., 2017- Comparative Analysis of ANN and SVM Models Combined with Wavelet Preprocess for Groundwater Depth Prediction. Water, 9 (10): 781.