به کارگیری روش میانگین هندسی برای مدل‌سازی پتانسیل معدنی مس پورفیری در ناحیه بافت کرمان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه معدن، دانشکده مهندسی معدن و متالورژی ، دانشگاه صنعتی امیر کبیر(پلی تکنیک تهران)

2 گروه معدن، دانشکده مهندسی معدن و متالورژی ، دانشگاه صنعتی امیر کبیر(پلی تکنیک تهران)

3 استادیار گروه مهندسی معدن دانشگاه ملایر

10.22071/gsj.2018.116787.1398

چکیده

منطقه معدنی بافت در استان کرمان در بخش جنوب خاوری کمان ماگمایی ارومیه دختر واقع شده است. این کمان به وسیله گسترش وسیعی از توده‌های نفوذی و سنگ‌های آتشفشانی سنوزوییک مشخص می‌شود و شرایط مطلوبی برای توسعه سیستم‌های هیدروترمالی و کانی‌سازی به خصوص کانی‌زایی مس پورفیری فراهم می‌کند. به منظور پتانسیل معدنی با هدف شناسایی مناطق پرپتانسیل، چند نقشه منفرد از شواهد شامل فاصله از توده‌های نفوذی، چگالی گسل، فاصله از آلتراسیون‌های هیدروترمالی و اثر ژئوشیمیایی چند عنصری تولید شد. مقادیر شاهد فضایی در هر نقشه با استفاده از یک تابع لجستیک از مقادیر بدون کران به بازه  (1و0) انتقال یافتند. سپس نقشه‌های پیوسته از لایه‌های شاهد فازی شده توسط روش میانگین هندسی تلفیق شدند. برای ارزیابی نتایج نقشه پتانسیلی نهایی یک روش داده محور پیش‌بینی- مساحت به کار گرفته شد. نتایج نشان می‌دهد که برای مدل احتمالی (پتانسیلی) میانگین هندسی، 87 درصد از کانسارهای شناخته شده در 13 درصد از منطقه مورد مطالعه پیش‌بینی شده‌اند. از این رو، این روش می‌تواند برای مدل‏سازی پتانسیل معدنی با هدف شناسایی مناطق هدف برای اکتشاف یک نوع کانسار خاص مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of geometric average approach for Cu-porphyry prospectivity mapping in the Baft area, kerman

نویسندگان [English]

  • Saeid Ghasemzadeh 1
  • Abbas Maghsoudi 2
  • Mahyar Yousefi 3
1 Mining and Metallurgical Engineering Department of Tehran Polytechnic (Amirkabir University of Technology),
2 Mining and Metallurgical Engineering Department of Tehran Polytechnic (Amirkabir University of Technology)
3 Faculty of Engineering, Malayer University, Malayer, Iran
چکیده [English]

The Baft district in Kerman province is located in the southeastern segment of the Urumieh-Dokhtar magmatic arc. This arc is characterized by thick accumulations of Cenozoic plutonic and volcanic rocks and provide favorable conditions to the development of hydrothermal systems and mineral deposition, in particular porphyry copper mineralization. For mineral prospectivity mapping (MPM) to delineate prospective areas some individual maps of evidence including distance to intrusive contacts, fault density, distance to hydrothermal alterations and multi-element geochemical signature were generated. Spatial evidence values in each map were transformed using a logistic function of unbounded values into the [0,1] range. Thus continuous maps of fuzzy evidence layers were integrated using geometric average function. To evaluate results of final potential map a data-driven prediction-area was used. The results showed that for the geometric average prospectivity model, 87% of the known mineral occurrences are predicted in 13% of the study area. Hence, this method can be utilized for mineral prospectivity mapping to delineate target areas for further exploration of a certain deposit-type.
 

کلیدواژه‌ها [English]

  • Mineral potential mapping
  • Geometric average
  • Cu-porphyry
  • Baft

References

Bonham-Carter, G. F., 1994- Geographic information systems for geoscientists-modeling with GIS. Computer methods in the geoscientists, 13, 398.

Bonham-Carter, G. F., Agterberg, F. P. and Wright, D. F., 1989- Weights of evidence modelling: a new approach to mapping mineral potential. Statistical applications in the earth sciences, 89(9), 171- 183.

Carranza, E. J. M., 2008- Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Elsevier.

Carranza, E. J. M., 2011- Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167- 185.

Chen, Y. and Wu, W., 2016- A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26- 38.

Cheng, Q., 1999- Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical exploration, 65(3), 175-194.

Cheng, Q., Agterberg, F. P. and Ballantyne, S. B., 1994- The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration51(2), 109- 130.

Cooke, D. R., Hollings, P. and Walshe, J. L., 2005- Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100(5), 801- 818.

Coolbaugh, M. F., Raines, G. L. and Zehner, R. E., 2007- Assessment of exploration bias in data-driven predictive models and the estimation of undiscovered resources. Natural Resources Research, 16(2), 199- 207.

Filzmoser, P., Hron, K. and Reimann, C., 2009- Principal component analysis for compositional data with outliers. Environmetrics, 20(6), 621- 632.

Hezarkhani, A., 2006- Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. Journal of Asian Earth Sciences, 27(3), 326- 340.

Meinert, L. D., 2007- Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods. Economic Geology, 102(7), 1355- 1355.

Mihalasky, M. J. and Bonham-Carter, G. F., 2001- Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10(3), 209- 226.

Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P. and Gardoll, S. J., 2008- Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 25-38.

Parsa, M., Maghsoudi, A., Yousefi, M. and Sadeghi, M., 2016a- Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228- 241.

Parsa, M., Maghsoudi, A., Yousefi, M. and Sadeghi, M., 2016b- Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111- 124.

Pirajno, F., 2010- Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3), 325- 346.

Rowan, L. C., Hook, S. J., Abrams, M. J. and Mars, J. C., 2003- Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Economic Geology, 98(5), 1019- 1027.

Sillitoe, R. H., 2010- Porphyry copper systems. Economic geology, 105(1), 3- 41.

Wang, Y. M. and Yang, J. B., 2007- Measuring the performances of decision-making units using interval efficiencies. Journal of Computational and Applied Mathematics, 198(1), 253- 267.

Yang, Z., Hou, Z., White, N. C., Chang, Z., Li, Z. and Song, Y., 2009- Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1), 133- 159.

Yousefi, M. and Carranza, E. J. M., 2015a- Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers and Geosciences, 74, 97- 109.

Yousefi, M. and Carranza, E. J. M., 2015b- Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers and Geosciences, 83, 72-79.

Yousefi, M. and Carranza, E. J. M., 2015c- Prediction-area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers and Geosciences, 79, 69- 81.

Yousefi, M. and Nykänen, V., 2017- Introduction to the special issue: GIS-based mineral potential targeting.

Yousefi, M., Kamkar-Rouhani, A. and Carranza, E. J. M., 2014- Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environmental, Analysis, 14, 45- 58.

Zuo, R. and Wang, J., 2016- Fractal/multifractal modeling of geochemical data: a review. Journal of Geochemical Exploration, 164, 33- 41.